Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional

Detalhes bibliográficos
Autor(a) principal: Tanaka, Erica Akemi
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-22102013-145119/
Resumo: Muitos problemas de classificação descritos na literatura de aprendizado de máquina e mineração de dados dizem respeito à classificação em que cada exemplo pertence a um único rótulo. Porém, vários problemas de classificação, principalmente no campo de Bioinformática são associados a mais de um rótulo; esses problemas são conhecidos como problemas de classificação multirrótulo. O princípio básico da classificação multirrótulo é similar ao da classificação tradicional (que possui um único rótulo), sendo diferenciada no número de rótulos a serem preditos, na qual há dois ou mais rótulos. Na área da Bioinformática muitos problemas são compostos por uma grande quantidade de rótulos em que cada exemplo pode estar associado. Porém, algoritmos de classificação tradicionais são incapazes de lidar com um conjunto de exemplos mutirrótulo, uma vez que esses algoritmos foram projetados para predizer um único rótulo. Uma solução mais simples é utilizar o método conhecido como método Binary Relevance. Porém, estudos mostraram que tal abordagem não constitui uma boa solução para o problema da classificação multirrótulo, pois cada classe é tratada individualmente, ignorando as possíveis relações entre elas. Dessa maneira, o objetivo dessa pesquisa foi propor uma nova adaptação do método Binary Relevance que leva em consideração relações entre os rótulos para tentar minimizar sua desvantagem, além de também considerar a capacidade de interpretabilidade do modelo gerado, não só o desempenho. Os resultados experimentais mostraram que esse novo método é capaz de gerar árvores que relacionam os rótulos correlacionados e também possui um desempenho comparável ao de outros métodos, obtendo bons resultados usando a medida-F.
id USP_0da2e0230e8292dfdb5b21ea6004d1d8
oai_identifier_str oai:teses.usp.br:tde-22102013-145119
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcionalAn Adaptation of Binary Relevance for Multi-Label Classification applied to Functional GenomicsAprendizado de MaquinaÁrvores de DecisãoClassificação MultirrótuloDecision TreeFuncional GenomicGenômica FUncionalMachine LearningMulti-Label ClassificationMuitos problemas de classificação descritos na literatura de aprendizado de máquina e mineração de dados dizem respeito à classificação em que cada exemplo pertence a um único rótulo. Porém, vários problemas de classificação, principalmente no campo de Bioinformática são associados a mais de um rótulo; esses problemas são conhecidos como problemas de classificação multirrótulo. O princípio básico da classificação multirrótulo é similar ao da classificação tradicional (que possui um único rótulo), sendo diferenciada no número de rótulos a serem preditos, na qual há dois ou mais rótulos. Na área da Bioinformática muitos problemas são compostos por uma grande quantidade de rótulos em que cada exemplo pode estar associado. Porém, algoritmos de classificação tradicionais são incapazes de lidar com um conjunto de exemplos mutirrótulo, uma vez que esses algoritmos foram projetados para predizer um único rótulo. Uma solução mais simples é utilizar o método conhecido como método Binary Relevance. Porém, estudos mostraram que tal abordagem não constitui uma boa solução para o problema da classificação multirrótulo, pois cada classe é tratada individualmente, ignorando as possíveis relações entre elas. Dessa maneira, o objetivo dessa pesquisa foi propor uma nova adaptação do método Binary Relevance que leva em consideração relações entre os rótulos para tentar minimizar sua desvantagem, além de também considerar a capacidade de interpretabilidade do modelo gerado, não só o desempenho. Os resultados experimentais mostraram que esse novo método é capaz de gerar árvores que relacionam os rótulos correlacionados e também possui um desempenho comparável ao de outros métodos, obtendo bons resultados usando a medida-F.Many classification problems described in the literature on Machine Learning and Data Mining relate to the classification in which each example belongs to a single class. However, many classification problems, especially in the field of Bioinformatics, are associated with more than one class; these problems are known as multi-label classification problems. The basic principle of multi-label classification is similar to the traditional classification (single label), and distinguished by the number of classes to be predicted, in this case, in which there are two or more labels. In Bioinformatics many problems are composed of a large number of labels that can be associated with each example. However, traditional classification algorithms are unable to cope with a set of multi-label examples, since these algorithms are designed to predict a single label. A simpler solution is to use the method known as Binary Relevance. However, studies have shown that this approach is not a good solution to the problem of multi-label classification because each class is treated individually, ignoring possible relations between them. Thus, the objective of this research was to propose a new adaptation of Binary Relevance method that took into account relations between labels trying to minimize its disadvantage, and also consider the ability of interpretability of the model generated, not just its performance. The experimental results show that this new method is capable of generating trees that relate labels and also has a performance comparable to other methods, obtaining good results using F-measure.Biblioteca Digitais de Teses e Dissertações da USPBaranauskas, José AugustoTanaka, Erica Akemi2013-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/95/95131/tde-22102013-145119/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:37Zoai:teses.usp.br:tde-22102013-145119Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:37Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
An Adaptation of Binary Relevance for Multi-Label Classification applied to Functional Genomics
title Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
spellingShingle Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
Tanaka, Erica Akemi
Aprendizado de Maquina
Árvores de Decisão
Classificação Multirrótulo
Decision Tree
Funcional Genomic
Genômica FUncional
Machine Learning
Multi-Label Classification
title_short Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
title_full Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
title_fullStr Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
title_full_unstemmed Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
title_sort Uma adaptação do método Binary Relevance utilizando árvores de decisão para problemas de classificação multirrótulo aplicado à genômica funcional
author Tanaka, Erica Akemi
author_facet Tanaka, Erica Akemi
author_role author
dc.contributor.none.fl_str_mv Baranauskas, José Augusto
dc.contributor.author.fl_str_mv Tanaka, Erica Akemi
dc.subject.por.fl_str_mv Aprendizado de Maquina
Árvores de Decisão
Classificação Multirrótulo
Decision Tree
Funcional Genomic
Genômica FUncional
Machine Learning
Multi-Label Classification
topic Aprendizado de Maquina
Árvores de Decisão
Classificação Multirrótulo
Decision Tree
Funcional Genomic
Genômica FUncional
Machine Learning
Multi-Label Classification
description Muitos problemas de classificação descritos na literatura de aprendizado de máquina e mineração de dados dizem respeito à classificação em que cada exemplo pertence a um único rótulo. Porém, vários problemas de classificação, principalmente no campo de Bioinformática são associados a mais de um rótulo; esses problemas são conhecidos como problemas de classificação multirrótulo. O princípio básico da classificação multirrótulo é similar ao da classificação tradicional (que possui um único rótulo), sendo diferenciada no número de rótulos a serem preditos, na qual há dois ou mais rótulos. Na área da Bioinformática muitos problemas são compostos por uma grande quantidade de rótulos em que cada exemplo pode estar associado. Porém, algoritmos de classificação tradicionais são incapazes de lidar com um conjunto de exemplos mutirrótulo, uma vez que esses algoritmos foram projetados para predizer um único rótulo. Uma solução mais simples é utilizar o método conhecido como método Binary Relevance. Porém, estudos mostraram que tal abordagem não constitui uma boa solução para o problema da classificação multirrótulo, pois cada classe é tratada individualmente, ignorando as possíveis relações entre elas. Dessa maneira, o objetivo dessa pesquisa foi propor uma nova adaptação do método Binary Relevance que leva em consideração relações entre os rótulos para tentar minimizar sua desvantagem, além de também considerar a capacidade de interpretabilidade do modelo gerado, não só o desempenho. Os resultados experimentais mostraram que esse novo método é capaz de gerar árvores que relacionam os rótulos correlacionados e também possui um desempenho comparável ao de outros métodos, obtendo bons resultados usando a medida-F.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/95/95131/tde-22102013-145119/
url http://www.teses.usp.br/teses/disponiveis/95/95131/tde-22102013-145119/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257284330127360