Classificação de sinais de epilepsia utilizando redes complexas

Detalhes bibliográficos
Autor(a) principal: Cestari, Daniel Moreira
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092017-145241/
Resumo: Contexto: Epilepsia não é uma única doença, mas uma família de síndromes que compartilham a recorrência de crises. Estima-se que 3% da população em geral terá epilepsia em algum momento em suas vidas. A detecção de crises epiléticas é frequentemente feita através da análise de exames de eletroencefalografia. Há várias dificuldades na detecção de crises, variabilidade entre pessoas, localização do conteúdo espectral, interferências, dentre outras. Motivação: Há um crescente uso com bons resultados de redes complexas para análise de séries temporais, mas poucos destes são voltados à análise de sinais de epilepsia. Os trabalhos que analisam epilepsia, em geral, negligenciam uma análise estatística rigorosa. Ainda há dúvida quanto à utilização de algoritmos prospectivos para predição de crises. Métodos: As séries temporais são analisadas utilizando 7 tamanhos diferentes de janelas, 256, 303, 512, 910, 1.024, 2.048, e 2.730 pontos. São utilizados 6 algoritmos de conversão de série temporal em rede complexa, redes de k vizinhos mais próximos, redes de k vizinhos mais próximos adaptativos, redes de epsilon vizinhança, redes cíclicas, redes de transição, e grafos de visibilidade. Cada um desses algoritmos têm seus parâmetros, e no total são realizadas 75 conversões. Para cada rede complexa gerada, são extraídas 21 medidas que as caracterizam. Com a extração dessas medidas, um novo conjunto de dados é formado e utilizado para treinar 37 classificadores diferentes, divididos em 4 classes, análise de discriminante linear, árvore de decisão, k vizinhos mais próximos, e máquina de vetores de suporte. É utilizada uma validação cruzada com 10-folds numa parte do conjunto de dados separada para o treino dos classificadores, e apenas o melhor classificador dentre os 37 foi selecionado em cada conversão realizada. No conjunto de teste, é feita a estimativa de desempenho do melhor classificador, que é então comparado à um preditor aleatório e ao estado da arte. Resultados: A rede de epsilon vizinhança obteve o melhor resultado, com 100% de acurácia no conjunto de teste em quase todos os cenários, com janelas de tamanho pequeno e com a análise de discriminante linear. As outras redes também tiveram bons resultados, comparáveis ao estado da arte, exceto a rede de transição cujo desempenho foi ruim. Conclusão: Foi possível desenvolver um algoritmo prospectivo com classificador linear utilizando a rede de epsilon vizinhança, com desempenho comparável ao estado da arte e com rigorosa avaliação estatística, e não apenas utilizando a acurácia como medida de desempenho.
id USP_0e6017b02fc01fde7ff90ec6283c8995
oai_identifier_str oai:teses.usp.br:tde-22092017-145241
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Classificação de sinais de epilepsia utilizando redes complexasClassification of epileptic signals using complex networksClassificaçãoClassificationComplex networksEEGEEGEpilepsiaEpilepsyRedes complexasContexto: Epilepsia não é uma única doença, mas uma família de síndromes que compartilham a recorrência de crises. Estima-se que 3% da população em geral terá epilepsia em algum momento em suas vidas. A detecção de crises epiléticas é frequentemente feita através da análise de exames de eletroencefalografia. Há várias dificuldades na detecção de crises, variabilidade entre pessoas, localização do conteúdo espectral, interferências, dentre outras. Motivação: Há um crescente uso com bons resultados de redes complexas para análise de séries temporais, mas poucos destes são voltados à análise de sinais de epilepsia. Os trabalhos que analisam epilepsia, em geral, negligenciam uma análise estatística rigorosa. Ainda há dúvida quanto à utilização de algoritmos prospectivos para predição de crises. Métodos: As séries temporais são analisadas utilizando 7 tamanhos diferentes de janelas, 256, 303, 512, 910, 1.024, 2.048, e 2.730 pontos. São utilizados 6 algoritmos de conversão de série temporal em rede complexa, redes de k vizinhos mais próximos, redes de k vizinhos mais próximos adaptativos, redes de epsilon vizinhança, redes cíclicas, redes de transição, e grafos de visibilidade. Cada um desses algoritmos têm seus parâmetros, e no total são realizadas 75 conversões. Para cada rede complexa gerada, são extraídas 21 medidas que as caracterizam. Com a extração dessas medidas, um novo conjunto de dados é formado e utilizado para treinar 37 classificadores diferentes, divididos em 4 classes, análise de discriminante linear, árvore de decisão, k vizinhos mais próximos, e máquina de vetores de suporte. É utilizada uma validação cruzada com 10-folds numa parte do conjunto de dados separada para o treino dos classificadores, e apenas o melhor classificador dentre os 37 foi selecionado em cada conversão realizada. No conjunto de teste, é feita a estimativa de desempenho do melhor classificador, que é então comparado à um preditor aleatório e ao estado da arte. Resultados: A rede de epsilon vizinhança obteve o melhor resultado, com 100% de acurácia no conjunto de teste em quase todos os cenários, com janelas de tamanho pequeno e com a análise de discriminante linear. As outras redes também tiveram bons resultados, comparáveis ao estado da arte, exceto a rede de transição cujo desempenho foi ruim. Conclusão: Foi possível desenvolver um algoritmo prospectivo com classificador linear utilizando a rede de epsilon vizinhança, com desempenho comparável ao estado da arte e com rigorosa avaliação estatística, e não apenas utilizando a acurácia como medida de desempenho.Context: Epilepsy is not a single disease, but a family of syndromes that share recurrent seizures. It is estimated that 3% of the population will have epilepsy at some moment of their life. Seizure detection is frequently done through EEG analysis. There are several difficulties in seizure detection, people variability, the location of the spectral content, interferences, among other things. Motivation: There is a growing usage with good results of the complex networks to analyze time series, but few studies focusing on epilepsy. The works that have analyzed epilepsy, in general, have neglected a strict statistical analysis. There is still doubts regarding the usage of prospective algorithms to predict seizures. Methods: The time series were analyzed on 7 different window sizes, 256, 303, 512, 910, 1024, 2048, and 2730 points. We used 6 different algorithms to convert the time series into complex networks, k nearest neighbors network, adaptive k nearest neighbors network, epsilon neighborhood network, cycle network, transition network, visibility graph. Each algorithm has its parameters, and in total, we performed 75 conversions. For each conversion, the network extracted 21 measures. A new dataset is formed with these measures, and it was used to train 37 classifiers, divided into 4 classes, linear discriminant analysis, decision tree, k nearest neighbors, support vector machine. We used 10-fold cross-validation in a training set, separated from the whole dataset, and only the best classifier between the 37 was selected for each conversion. In the test set, we estimated the performance of the best classifiers, and then they were compared with a random predictor and with the state-of-the-art. Results: The epsilon neighborhood network presented the best result with 100% accuracy over almost all scenarios in the test set, with small window sizes and the linear discriminant analysis. The other networks also had good results, comparable to the state-of-the-art, except the transition network which had poor performance. Conclusion: We were able to develop a prospective algorithm with a linear classifier using the epsilon neighborhood network, with a performance comparable to the state-of-the-art and with rigorous statistical analysis, and not only using the accuracy as our performance measure.Biblioteca Digitais de Teses e Dissertações da USPRosa, João Luis GarciaCestari, Daniel Moreira2017-06-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092017-145241/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-22092017-145241Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Classificação de sinais de epilepsia utilizando redes complexas
Classification of epileptic signals using complex networks
title Classificação de sinais de epilepsia utilizando redes complexas
spellingShingle Classificação de sinais de epilepsia utilizando redes complexas
Cestari, Daniel Moreira
Classificação
Classification
Complex networks
EEG
EEG
Epilepsia
Epilepsy
Redes complexas
title_short Classificação de sinais de epilepsia utilizando redes complexas
title_full Classificação de sinais de epilepsia utilizando redes complexas
title_fullStr Classificação de sinais de epilepsia utilizando redes complexas
title_full_unstemmed Classificação de sinais de epilepsia utilizando redes complexas
title_sort Classificação de sinais de epilepsia utilizando redes complexas
author Cestari, Daniel Moreira
author_facet Cestari, Daniel Moreira
author_role author
dc.contributor.none.fl_str_mv Rosa, João Luis Garcia
dc.contributor.author.fl_str_mv Cestari, Daniel Moreira
dc.subject.por.fl_str_mv Classificação
Classification
Complex networks
EEG
EEG
Epilepsia
Epilepsy
Redes complexas
topic Classificação
Classification
Complex networks
EEG
EEG
Epilepsia
Epilepsy
Redes complexas
description Contexto: Epilepsia não é uma única doença, mas uma família de síndromes que compartilham a recorrência de crises. Estima-se que 3% da população em geral terá epilepsia em algum momento em suas vidas. A detecção de crises epiléticas é frequentemente feita através da análise de exames de eletroencefalografia. Há várias dificuldades na detecção de crises, variabilidade entre pessoas, localização do conteúdo espectral, interferências, dentre outras. Motivação: Há um crescente uso com bons resultados de redes complexas para análise de séries temporais, mas poucos destes são voltados à análise de sinais de epilepsia. Os trabalhos que analisam epilepsia, em geral, negligenciam uma análise estatística rigorosa. Ainda há dúvida quanto à utilização de algoritmos prospectivos para predição de crises. Métodos: As séries temporais são analisadas utilizando 7 tamanhos diferentes de janelas, 256, 303, 512, 910, 1.024, 2.048, e 2.730 pontos. São utilizados 6 algoritmos de conversão de série temporal em rede complexa, redes de k vizinhos mais próximos, redes de k vizinhos mais próximos adaptativos, redes de epsilon vizinhança, redes cíclicas, redes de transição, e grafos de visibilidade. Cada um desses algoritmos têm seus parâmetros, e no total são realizadas 75 conversões. Para cada rede complexa gerada, são extraídas 21 medidas que as caracterizam. Com a extração dessas medidas, um novo conjunto de dados é formado e utilizado para treinar 37 classificadores diferentes, divididos em 4 classes, análise de discriminante linear, árvore de decisão, k vizinhos mais próximos, e máquina de vetores de suporte. É utilizada uma validação cruzada com 10-folds numa parte do conjunto de dados separada para o treino dos classificadores, e apenas o melhor classificador dentre os 37 foi selecionado em cada conversão realizada. No conjunto de teste, é feita a estimativa de desempenho do melhor classificador, que é então comparado à um preditor aleatório e ao estado da arte. Resultados: A rede de epsilon vizinhança obteve o melhor resultado, com 100% de acurácia no conjunto de teste em quase todos os cenários, com janelas de tamanho pequeno e com a análise de discriminante linear. As outras redes também tiveram bons resultados, comparáveis ao estado da arte, exceto a rede de transição cujo desempenho foi ruim. Conclusão: Foi possível desenvolver um algoritmo prospectivo com classificador linear utilizando a rede de epsilon vizinhança, com desempenho comparável ao estado da arte e com rigorosa avaliação estatística, e não apenas utilizando a acurácia como medida de desempenho.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092017-145241/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092017-145241/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257282569568256