Classificação de textos com redes complexas

Detalhes bibliográficos
Autor(a) principal: Amancio, Diego Raphael
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-20012014-092439/
Resumo: A classificação automática de textos em categorias pré-estabelecidas tem despertado grande interesse nos últimos anos devido à necessidade de organização do número crescente de documentos. A abordagem dominante para classificação é baseada na análise de conteúdo dos textos. Nesta tese, investigamos a aplicabilidade de atributos de estilo em tarefas tradicionais de classificação, usando a modelagem de textos como redes complexas, em que os vértices representam palavras e arestas representam relações de adjacência. Estudamos como métricas topológicas podem ser úteis no processamento de línguas naturais, sendo a tarefa de classificação apoiada por métodos de aprendizado de máquina, supervisionado e não supervisionado. Um estudo detalhado das métricas topológicas revelou que várias delas são informativas, por permitirem distinguir textos escritos em língua natural de textos com palavras distribuídas aleatoriamente. Mostramos também que a maioria das medidas de rede depende de fatores sintáticos, enquanto medidas de intermitência são mais sensíveis à semântica. Com relação à aplicabilidade da modelagem de textos como redes complexas, mostramos que existe uma dependência significativa entre estilo de autores e topologia da rede. Para a tarefa de reconhecimento de autoria de 40 romances escritos por 8 autores, uma taxa de acerto de 65% foi obtida com métricas de rede e intermitência de palavras. Ainda na análise de estilo, descobrimos que livros pertencentes ao mesmo estilo literário tendem a possuir estruturas topológicas similares. A modelagem de textos como redes também foi útil para discriminar sentidos de palavras ambíguas, a partir apenas de informação topológica dos vértices, evidenciando uma relação não trivial entre sintaxe e semântica. Para algumas palavras, a discriminação com redes complexas foi ainda melhor que a estratégia baseada em padrões de recorrência contextual de palavras polissêmicas. Os estudos desenvolvidos nesta tese confirmam que aspectos de estilo e semânticos influenciam na organização estrutural de conceitos em textos modelados como rede. Assim, a modelagem de textos como redes de adjacência de palavras pode ser útil não apenas para entender mecanismos fundamentais da linguagem, mas também para aperfeiçoar aplicações reais quando combinada com métodos tradicionais de processamento de texto.
id USP_0f2c502da05948a59eb22cef323af759
oai_identifier_str oai:teses.usp.br:tde-20012014-092439
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Classificação de textos com redes complexasUsing complex networks to classify textsClassificação textualComplex networksPattern recognitionProcessamento de textoReconhecimento de padrõesRedes complexasText classificationText processingA classificação automática de textos em categorias pré-estabelecidas tem despertado grande interesse nos últimos anos devido à necessidade de organização do número crescente de documentos. A abordagem dominante para classificação é baseada na análise de conteúdo dos textos. Nesta tese, investigamos a aplicabilidade de atributos de estilo em tarefas tradicionais de classificação, usando a modelagem de textos como redes complexas, em que os vértices representam palavras e arestas representam relações de adjacência. Estudamos como métricas topológicas podem ser úteis no processamento de línguas naturais, sendo a tarefa de classificação apoiada por métodos de aprendizado de máquina, supervisionado e não supervisionado. Um estudo detalhado das métricas topológicas revelou que várias delas são informativas, por permitirem distinguir textos escritos em língua natural de textos com palavras distribuídas aleatoriamente. Mostramos também que a maioria das medidas de rede depende de fatores sintáticos, enquanto medidas de intermitência são mais sensíveis à semântica. Com relação à aplicabilidade da modelagem de textos como redes complexas, mostramos que existe uma dependência significativa entre estilo de autores e topologia da rede. Para a tarefa de reconhecimento de autoria de 40 romances escritos por 8 autores, uma taxa de acerto de 65% foi obtida com métricas de rede e intermitência de palavras. Ainda na análise de estilo, descobrimos que livros pertencentes ao mesmo estilo literário tendem a possuir estruturas topológicas similares. A modelagem de textos como redes também foi útil para discriminar sentidos de palavras ambíguas, a partir apenas de informação topológica dos vértices, evidenciando uma relação não trivial entre sintaxe e semântica. Para algumas palavras, a discriminação com redes complexas foi ainda melhor que a estratégia baseada em padrões de recorrência contextual de palavras polissêmicas. Os estudos desenvolvidos nesta tese confirmam que aspectos de estilo e semânticos influenciam na organização estrutural de conceitos em textos modelados como rede. Assim, a modelagem de textos como redes de adjacência de palavras pode ser útil não apenas para entender mecanismos fundamentais da linguagem, mas também para aperfeiçoar aplicações reais quando combinada com métodos tradicionais de processamento de texto.The automatic classification of texts in pre-established categories is drawing increasing interest owing to the need to organize the ever growing number of electronic documents. The prevailing approach for classification is based on analysis of textual contents. In this thesis, we investigate the applicability of attributes based on textual style using the complex network (CN) representation, where nodes represent words and edges are adjacency relations. We studied the suitability of CN measurements for natural language processing tasks, with classification being assisted by supervised and unsupervised machine learning methods. A detailed study of topological measurements in texts revealed that several measurements are informative in the sense that they are able to distinguish meaningful from shuffled texts. Moreover, most measurements depend on syntactic factors, while intermittency measurements are more sensitive to semantic factors. As for the use of the CN model in practical scenarios, there is significant correlation between authors style and network topology. We achieved an accuracy rate of 65% in discriminating eight authors of novels with the use of network and intermittency measurements. During the stylistic analysis, we also found that books belonging to the same literary movement could be identified from their similar topological features. The network model also proved useful for disambiguating word senses. Upon employing only topological information to characterize nodes representing polysemous words, we found a strong relationship between syntax and semantics. For several words, the CN approach performed surprisingly better than the method based on recurrence patterns of neighboring words. The studies carried out in this thesis confirm that stylistic and semantic aspects play a crucial role in the structural organization of word adjacency networks. The word adjacency model investigated here might be useful not only to provide insight into the underlying mechanisms of the language, but also to enhance the performance of real applications implementing both CN and traditional approaches.Biblioteca Digitais de Teses e Dissertações da USPCosta, Luciano da FontouraOliveira Junior, Osvaldo Novais deAmancio, Diego Raphael2013-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-20012014-092439/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:02Zoai:teses.usp.br:tde-20012014-092439Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Classificação de textos com redes complexas
Using complex networks to classify texts
title Classificação de textos com redes complexas
spellingShingle Classificação de textos com redes complexas
Amancio, Diego Raphael
Classificação textual
Complex networks
Pattern recognition
Processamento de texto
Reconhecimento de padrões
Redes complexas
Text classification
Text processing
title_short Classificação de textos com redes complexas
title_full Classificação de textos com redes complexas
title_fullStr Classificação de textos com redes complexas
title_full_unstemmed Classificação de textos com redes complexas
title_sort Classificação de textos com redes complexas
author Amancio, Diego Raphael
author_facet Amancio, Diego Raphael
author_role author
dc.contributor.none.fl_str_mv Costa, Luciano da Fontoura
Oliveira Junior, Osvaldo Novais de
dc.contributor.author.fl_str_mv Amancio, Diego Raphael
dc.subject.por.fl_str_mv Classificação textual
Complex networks
Pattern recognition
Processamento de texto
Reconhecimento de padrões
Redes complexas
Text classification
Text processing
topic Classificação textual
Complex networks
Pattern recognition
Processamento de texto
Reconhecimento de padrões
Redes complexas
Text classification
Text processing
description A classificação automática de textos em categorias pré-estabelecidas tem despertado grande interesse nos últimos anos devido à necessidade de organização do número crescente de documentos. A abordagem dominante para classificação é baseada na análise de conteúdo dos textos. Nesta tese, investigamos a aplicabilidade de atributos de estilo em tarefas tradicionais de classificação, usando a modelagem de textos como redes complexas, em que os vértices representam palavras e arestas representam relações de adjacência. Estudamos como métricas topológicas podem ser úteis no processamento de línguas naturais, sendo a tarefa de classificação apoiada por métodos de aprendizado de máquina, supervisionado e não supervisionado. Um estudo detalhado das métricas topológicas revelou que várias delas são informativas, por permitirem distinguir textos escritos em língua natural de textos com palavras distribuídas aleatoriamente. Mostramos também que a maioria das medidas de rede depende de fatores sintáticos, enquanto medidas de intermitência são mais sensíveis à semântica. Com relação à aplicabilidade da modelagem de textos como redes complexas, mostramos que existe uma dependência significativa entre estilo de autores e topologia da rede. Para a tarefa de reconhecimento de autoria de 40 romances escritos por 8 autores, uma taxa de acerto de 65% foi obtida com métricas de rede e intermitência de palavras. Ainda na análise de estilo, descobrimos que livros pertencentes ao mesmo estilo literário tendem a possuir estruturas topológicas similares. A modelagem de textos como redes também foi útil para discriminar sentidos de palavras ambíguas, a partir apenas de informação topológica dos vértices, evidenciando uma relação não trivial entre sintaxe e semântica. Para algumas palavras, a discriminação com redes complexas foi ainda melhor que a estratégia baseada em padrões de recorrência contextual de palavras polissêmicas. Os estudos desenvolvidos nesta tese confirmam que aspectos de estilo e semânticos influenciam na organização estrutural de conceitos em textos modelados como rede. Assim, a modelagem de textos como redes de adjacência de palavras pode ser útil não apenas para entender mecanismos fundamentais da linguagem, mas também para aperfeiçoar aplicações reais quando combinada com métodos tradicionais de processamento de texto.
publishDate 2013
dc.date.none.fl_str_mv 2013-10-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-20012014-092439/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-20012014-092439/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257142017392640