Guidelines for the Assessment of Black-box Interpretability Methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-13102022-112418/ |
Resumo: | With the rise of deep learning and complex machine learning algorithms, higher performance has been sought to reach equally high accuracy in a variety of environments and applications. The search for high accuracy has led to complex predictive models known as black-boxes that do not offer access to their decision-making processes: these models provide little to no explanations on why a certain outcome has resulted or what influenced that outcome. Unfortunately, these drawbacks can be utterly significant especially with sensitive scenarios such as legal, social, medical or financial applications that a misclassified outcome or even an outcome classified for the wrong reason might cause tremendous impacts. Driven by this consternation, interpretability techniques have come into play in an effort to bring, through a variety of methods, explanations to the outcome of a black-box model or even the reasoning behind that model, or sometimes proposing an interpretable predicting algorithm altogether. However, these techniques are not well established yet, which means that they are in constant development; similarly, the assessment of these techniques is also lacking. Currently, there is not a consensus on how they can be evaluated or even what properties interpretability methods are supposed to meet. Driven by that gap, this work proposes a set of evaluation metrics that are capable of calculating three desired properties obtained from interpretability techniques. These metrics can be used to assess and determine the best parameters or the best interpretability technique for determined experiments. |
id |
USP_0f54d2ecd75526f82260e228b86f9a59 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-13102022-112418 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Guidelines for the Assessment of Black-box Interpretability MethodsDiretrizes para avaliação de técnicas de Interpretabilidade de modelos Caixa-PretaAprendizado de máquinaAprendizado profundoAssessmentAvaliaçãoBlack-boxDeep learningInterpretabilidadeInterpretabilityMachine learningModelos caixa-pretaNeural networksRedes neuraisWith the rise of deep learning and complex machine learning algorithms, higher performance has been sought to reach equally high accuracy in a variety of environments and applications. The search for high accuracy has led to complex predictive models known as black-boxes that do not offer access to their decision-making processes: these models provide little to no explanations on why a certain outcome has resulted or what influenced that outcome. Unfortunately, these drawbacks can be utterly significant especially with sensitive scenarios such as legal, social, medical or financial applications that a misclassified outcome or even an outcome classified for the wrong reason might cause tremendous impacts. Driven by this consternation, interpretability techniques have come into play in an effort to bring, through a variety of methods, explanations to the outcome of a black-box model or even the reasoning behind that model, or sometimes proposing an interpretable predicting algorithm altogether. However, these techniques are not well established yet, which means that they are in constant development; similarly, the assessment of these techniques is also lacking. Currently, there is not a consensus on how they can be evaluated or even what properties interpretability methods are supposed to meet. Driven by that gap, this work proposes a set of evaluation metrics that are capable of calculating three desired properties obtained from interpretability techniques. These metrics can be used to assess and determine the best parameters or the best interpretability technique for determined experiments.Com o surgimento de redes neurais profundas e algorítmos complexos de aprendizado de máquina, tem-se buscando cada vez mais maiores performances com o objetivo de alcançar melhores acurácias de classificação em uma variedade de aplicações. A busca por maior acurácia leva a modelos preditivos complexos conhecidos como caixas-pretas, que não oferecem acesso ao processo interno de decisão: estes modelos providenciam pouca ou nenhuma explicação no motivo pelo qual um determinado resultado foi obtido ou o que influenciou este resultado. Infelizmente, estas desvantagens podem ser impactantes especialmente em aplicações sensíveis como em cenários legais, sociais, médicos ou financeiros em que uma classificação errada ou uma classificação gerada por motivos errados pode causar impactos significativos. Motivados por esta preocupação, técnicas de interpretabilidade começam a surgir com o objetivo de trazer, por uma variedade de métodos, explicações para resultados de modelos caixa-preta, ou então propondo algorítmos preditivos originalmente interpretáveis. Porém, tais técnicas ainda não são maduras e estão em constante desenvolvimento; da mesma forma, a avaliação de tais técnicas também carecem de amadurecimento. Atualmente, não há um consenso em como elas podem ser avaliadas ou comparadas, ou então quais propriedades elas devem garantir. Este trabalho, partindo desta lacuna, propõe um conjunto de métricas avaliativas capazes de calcular três propriedades de técnicas de interpretabilidade. Tais métricas podem ser usadas para avaliar parâmetros ou determinar a melhor ferramenta de interpretabilidade para determinados experimentos.Biblioteca Digitais de Teses e Dissertações da USPNonato, Luis GustavoAraujo, Gabriel Gazetta de2022-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-13102022-112418/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-10-13T14:29:36Zoai:teses.usp.br:tde-13102022-112418Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-10-13T14:29:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Guidelines for the Assessment of Black-box Interpretability Methods Diretrizes para avaliação de técnicas de Interpretabilidade de modelos Caixa-Preta |
title |
Guidelines for the Assessment of Black-box Interpretability Methods |
spellingShingle |
Guidelines for the Assessment of Black-box Interpretability Methods Araujo, Gabriel Gazetta de Aprendizado de máquina Aprendizado profundo Assessment Avaliação Black-box Deep learning Interpretabilidade Interpretability Machine learning Modelos caixa-preta Neural networks Redes neurais |
title_short |
Guidelines for the Assessment of Black-box Interpretability Methods |
title_full |
Guidelines for the Assessment of Black-box Interpretability Methods |
title_fullStr |
Guidelines for the Assessment of Black-box Interpretability Methods |
title_full_unstemmed |
Guidelines for the Assessment of Black-box Interpretability Methods |
title_sort |
Guidelines for the Assessment of Black-box Interpretability Methods |
author |
Araujo, Gabriel Gazetta de |
author_facet |
Araujo, Gabriel Gazetta de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Nonato, Luis Gustavo |
dc.contributor.author.fl_str_mv |
Araujo, Gabriel Gazetta de |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Aprendizado profundo Assessment Avaliação Black-box Deep learning Interpretabilidade Interpretability Machine learning Modelos caixa-preta Neural networks Redes neurais |
topic |
Aprendizado de máquina Aprendizado profundo Assessment Avaliação Black-box Deep learning Interpretabilidade Interpretability Machine learning Modelos caixa-preta Neural networks Redes neurais |
description |
With the rise of deep learning and complex machine learning algorithms, higher performance has been sought to reach equally high accuracy in a variety of environments and applications. The search for high accuracy has led to complex predictive models known as black-boxes that do not offer access to their decision-making processes: these models provide little to no explanations on why a certain outcome has resulted or what influenced that outcome. Unfortunately, these drawbacks can be utterly significant especially with sensitive scenarios such as legal, social, medical or financial applications that a misclassified outcome or even an outcome classified for the wrong reason might cause tremendous impacts. Driven by this consternation, interpretability techniques have come into play in an effort to bring, through a variety of methods, explanations to the outcome of a black-box model or even the reasoning behind that model, or sometimes proposing an interpretable predicting algorithm altogether. However, these techniques are not well established yet, which means that they are in constant development; similarly, the assessment of these techniques is also lacking. Currently, there is not a consensus on how they can be evaluated or even what properties interpretability methods are supposed to meet. Driven by that gap, this work proposes a set of evaluation metrics that are capable of calculating three desired properties obtained from interpretability techniques. These metrics can be used to assess and determine the best parameters or the best interpretability technique for determined experiments. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-13102022-112418/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-13102022-112418/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256947711016960 |