Incluindo funções de distância e extratores de características para suporte a consultas por similaridade

Detalhes bibliográficos
Autor(a) principal: Bêdo, Marcos Vinícius Naves
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112013-160506/
Resumo: Sistemas Gerenciadores de Bases de Dados Relacionais (SGBDR) são capazes de lidar com um alto volume de dados. As consultas nestes sistemas são realizados a partir da relação de ordem total, domínio sob o qual estão definidos dados simples como números ou strings, por exemplo. No caso de dados complexos, como imagens médicas, áudio ou séries-temporais financeiras que não obedecem as propriedade da relação acima citada e necessária uma abordagem que seja capaz de realizar a recuperação por conteúdo destes dados em tempo hábil e com semântica adequada. Nesse sentido, a literatura nos apresenta, como paradigma consolidado, as consultas por similaridade. Esse paradigma e a base para o funcionamento de muitos aplicativos de auxílio a tomada de decisão pelo especialista como Recuperação de Imagens Médicas por Conteúdo (CBMIR) e Recuperação de Áudio por Conteúdo (CBAR) e inclui diversas sub-áreas de pesquisa tais como extratores de características, funções de distância e métodos de acesso métrico. O desenvolvimento de novos métodos extratores de características e novas funções de distância são de fundamental importância para a diminuição do gap semântico entre os aplicativos e usuários, enquanto os métodos de acesso métricos são os reponsáveis diretos pela rápida resposta dos sistemas. Integrar todas essas funcionalidades em um framework de suporte a consultas por similaridade dentro de um SGBDR permanece um grande desafio. Esse trabalho objetiva estender uma proposta inicial dos recursos disponíveis no SIREN, inserindo novos extratores de características e funções de distância para imagens médicas e séries-temporais financeiras transformando-o em um framework, de forma que seus componentes possam ser utilizados via comandos Structured Query Language (SQL). Os resultados poderão ser diretamente utilizados por aplicativos de auxílio a tomada de decisão pelo especialista
id USP_1192372ebf6bbf3f179ab393111b7c95
oai_identifier_str oai:teses.usp.br:tde-08112013-160506
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Incluindo funções de distância e extratores de características para suporte a consultas por similaridadeIncluding distance functions and features extractors to support similarity queriesCBMIRCBMIRConsultas por similaridadeDistance functionsExtended SQLExtratores de característicasFeatures extractorsFunções de distânciaSimilarity queriesSQL estendidoSistemas Gerenciadores de Bases de Dados Relacionais (SGBDR) são capazes de lidar com um alto volume de dados. As consultas nestes sistemas são realizados a partir da relação de ordem total, domínio sob o qual estão definidos dados simples como números ou strings, por exemplo. No caso de dados complexos, como imagens médicas, áudio ou séries-temporais financeiras que não obedecem as propriedade da relação acima citada e necessária uma abordagem que seja capaz de realizar a recuperação por conteúdo destes dados em tempo hábil e com semântica adequada. Nesse sentido, a literatura nos apresenta, como paradigma consolidado, as consultas por similaridade. Esse paradigma e a base para o funcionamento de muitos aplicativos de auxílio a tomada de decisão pelo especialista como Recuperação de Imagens Médicas por Conteúdo (CBMIR) e Recuperação de Áudio por Conteúdo (CBAR) e inclui diversas sub-áreas de pesquisa tais como extratores de características, funções de distância e métodos de acesso métrico. O desenvolvimento de novos métodos extratores de características e novas funções de distância são de fundamental importância para a diminuição do gap semântico entre os aplicativos e usuários, enquanto os métodos de acesso métricos são os reponsáveis diretos pela rápida resposta dos sistemas. Integrar todas essas funcionalidades em um framework de suporte a consultas por similaridade dentro de um SGBDR permanece um grande desafio. Esse trabalho objetiva estender uma proposta inicial dos recursos disponíveis no SIREN, inserindo novos extratores de características e funções de distância para imagens médicas e séries-temporais financeiras transformando-o em um framework, de forma que seus componentes possam ser utilizados via comandos Structured Query Language (SQL). Os resultados poderão ser diretamente utilizados por aplicativos de auxílio a tomada de decisão pelo especialistaDatabase Management Systems (DBMS) can deal with large amount of data. The queries on those systems obey the total order relation (TOR), domain where simple data such as numbers or strings are defined. In the case of complex data (e.g.: medical images, audio or temporal time-series) which does not obey the TOR properties, it\'s mandatory a new approach that can retrieve complex data by content with time skilful and proper semantics. To do so, the literature presents us, as consolidated paradigm, the similarity queries. This paradigm is the base of many computer aided applications (e.g.: Content-Based Medical Image Retrieval (CBMIR) and Content-Based Audio Retrieval (CBAR)) and include several research areas such as features extraction, distance functions and metrical access methods (MAM). Developing new features extractors methods and new distance functions (and combine them) are crucial to reduce the semantic gap between the content-based applications and the users. The MAM are responsible to provide fast and scalable answer to the systems. Integrate all those functionalities in one framework that can provide support to similarity queries inside a DBMS remains a huge challenge. The main objective of this work is extend the initial resources of the system SIREN, inserting new features extractor methods and distance functions to medical images, audio and financial time-series, turning it into a framework. All components may be used by extended Structured Query Language (SQL) commands. The SQL can be directly used by computer-aided applicationsBiblioteca Digitais de Teses e Dissertações da USPTraina Junior, CaetanoBêdo, Marcos Vinícius Naves2013-09-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112013-160506/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:02Zoai:teses.usp.br:tde-08112013-160506Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
Including distance functions and features extractors to support similarity queries
title Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
spellingShingle Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
Bêdo, Marcos Vinícius Naves
CBMIR
CBMIR
Consultas por similaridade
Distance functions
Extended SQL
Extratores de características
Features extractors
Funções de distância
Similarity queries
SQL estendido
title_short Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
title_full Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
title_fullStr Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
title_full_unstemmed Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
title_sort Incluindo funções de distância e extratores de características para suporte a consultas por similaridade
author Bêdo, Marcos Vinícius Naves
author_facet Bêdo, Marcos Vinícius Naves
author_role author
dc.contributor.none.fl_str_mv Traina Junior, Caetano
dc.contributor.author.fl_str_mv Bêdo, Marcos Vinícius Naves
dc.subject.por.fl_str_mv CBMIR
CBMIR
Consultas por similaridade
Distance functions
Extended SQL
Extratores de características
Features extractors
Funções de distância
Similarity queries
SQL estendido
topic CBMIR
CBMIR
Consultas por similaridade
Distance functions
Extended SQL
Extratores de características
Features extractors
Funções de distância
Similarity queries
SQL estendido
description Sistemas Gerenciadores de Bases de Dados Relacionais (SGBDR) são capazes de lidar com um alto volume de dados. As consultas nestes sistemas são realizados a partir da relação de ordem total, domínio sob o qual estão definidos dados simples como números ou strings, por exemplo. No caso de dados complexos, como imagens médicas, áudio ou séries-temporais financeiras que não obedecem as propriedade da relação acima citada e necessária uma abordagem que seja capaz de realizar a recuperação por conteúdo destes dados em tempo hábil e com semântica adequada. Nesse sentido, a literatura nos apresenta, como paradigma consolidado, as consultas por similaridade. Esse paradigma e a base para o funcionamento de muitos aplicativos de auxílio a tomada de decisão pelo especialista como Recuperação de Imagens Médicas por Conteúdo (CBMIR) e Recuperação de Áudio por Conteúdo (CBAR) e inclui diversas sub-áreas de pesquisa tais como extratores de características, funções de distância e métodos de acesso métrico. O desenvolvimento de novos métodos extratores de características e novas funções de distância são de fundamental importância para a diminuição do gap semântico entre os aplicativos e usuários, enquanto os métodos de acesso métricos são os reponsáveis diretos pela rápida resposta dos sistemas. Integrar todas essas funcionalidades em um framework de suporte a consultas por similaridade dentro de um SGBDR permanece um grande desafio. Esse trabalho objetiva estender uma proposta inicial dos recursos disponíveis no SIREN, inserindo novos extratores de características e funções de distância para imagens médicas e séries-temporais financeiras transformando-o em um framework, de forma que seus componentes possam ser utilizados via comandos Structured Query Language (SQL). Os resultados poderão ser diretamente utilizados por aplicativos de auxílio a tomada de decisão pelo especialista
publishDate 2013
dc.date.none.fl_str_mv 2013-09-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112013-160506/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112013-160506/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256815218196480