Coherent light-matter interaction in dense atomic clouds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/ |
Resumo: | The main objective of this research is to study a particular case of light-matter interaction: the scattering of light in dense atomic samples. The regime of high atomic densities is represented by samples where the distance between neighboring atoms is on the order of the wavelength associated with the atomic transition. In this regime, short-range atomic interactions cannot be neglected, and in these systems, we expect to observe significant modifications in collective effects such as subradiance or superradiance. Overall, the propagation of light through this type of system is not well-known to the scientific community, and the existing models work to describe very specific situations. To pave the way for achieving our overall goal, this work proposes an experimental setup to obtain a dense cloud of 88Sr, which is the chemical species we work with in our laboratory. For this purpose, atoms previously trapped using a Magneto-Optical Trap are transferred to a Crossed Optical Dipole Trap. During the optimization and characterization of the optical trap, problems were encountered in producing an image with quantitative information of the atomic ensemble and in transferring a large number of atoms in a very small trapping volume. These problems were resolved with the implementation of a Phase Contrast Imaging system and the implementation of an Optical Molasses as an additional cooling step. Under these conditions, we obtained a cloud that can be suitable for conducting studies on collective effects, transitioning from the dilute to the dense regime. The initial experiments, once our atomic ensemble was prepared, involve measuring the coherent transmission of a low-intensity beam through the cloud. For this purpose, incident light near the resonance of a dipolar transition of the type J = 0 ↔ J = 1 of 88Sr is used, interacting with a homogeneous region of the sample. Simulations of this type of process can be performed using the Coupled Dipole Model, which describes the overall response of light scattering by the sample considering dipole-dipole interactions mediated by light. With this work, we aim to advance the understanding of density effects by comparing the coherent optical response of the dense cloud with the theory based on the Coupled Dipole Model. |
id |
USP_1248d1eefcc63cb49a120c64a4b24156 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04032024-105521 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Coherent light-matter interaction in dense atomic cloudsInteração coerente luz-matéria em amostras atômicas densasArmadilha óptica de dipoloCoupled dipole modelDense regimeModelo de dipolos acopladosOptical dipole trapRegime densoThe main objective of this research is to study a particular case of light-matter interaction: the scattering of light in dense atomic samples. The regime of high atomic densities is represented by samples where the distance between neighboring atoms is on the order of the wavelength associated with the atomic transition. In this regime, short-range atomic interactions cannot be neglected, and in these systems, we expect to observe significant modifications in collective effects such as subradiance or superradiance. Overall, the propagation of light through this type of system is not well-known to the scientific community, and the existing models work to describe very specific situations. To pave the way for achieving our overall goal, this work proposes an experimental setup to obtain a dense cloud of 88Sr, which is the chemical species we work with in our laboratory. For this purpose, atoms previously trapped using a Magneto-Optical Trap are transferred to a Crossed Optical Dipole Trap. During the optimization and characterization of the optical trap, problems were encountered in producing an image with quantitative information of the atomic ensemble and in transferring a large number of atoms in a very small trapping volume. These problems were resolved with the implementation of a Phase Contrast Imaging system and the implementation of an Optical Molasses as an additional cooling step. Under these conditions, we obtained a cloud that can be suitable for conducting studies on collective effects, transitioning from the dilute to the dense regime. The initial experiments, once our atomic ensemble was prepared, involve measuring the coherent transmission of a low-intensity beam through the cloud. For this purpose, incident light near the resonance of a dipolar transition of the type J = 0 ↔ J = 1 of 88Sr is used, interacting with a homogeneous region of the sample. Simulations of this type of process can be performed using the Coupled Dipole Model, which describes the overall response of light scattering by the sample considering dipole-dipole interactions mediated by light. With this work, we aim to advance the understanding of density effects by comparing the coherent optical response of the dense cloud with the theory based on the Coupled Dipole Model.O principal objetivo desta pesquisa é estudar um caso particular da interação luz-matéria: o espalhamento da luz em amostras atômicas densas. O regime de altas densidades atômicas está representado por amostras onde a distância entre átomos vizinhos é da ordem do comprimento de onda associado à transição atômica. Neste regime, as interações de curto alcance não podem ser negligenciadas, e esperamos observar modificações importantes em efeitos coletivos como a subradiância ou superradiância. No geral, a propagação da luz por esse tipo de sistema é um processo não muito conhecido pela comunidade científica, e os modelos existentes funcionam para descrever situações muito específicas. Para abrir caminho ao cumprimento do nosso objetivo geral, neste trabalho é proposto um arranjo experimental para obter uma nuvem densa de 88Sr, que é a espécie química com a qual trabalhamos em nosso laboratório. Para isso, os átomos previamente aprisionados usando uma Armadilha Magneto-Óptica são transferidos para uma Armadilha Óptica de Dipolo cruzada. Durante o processo de otimização e caracterização da armadilha óptica, foram enfrentados problemas para produzir uma imagem com informação quantitativa do ensemble atômico e para transferir um número grande de átomos num volume de aprisionamento muito pequeno. Esses problemas foram resolvidos com a implementação de um sistema de Imagem de Contraste de Fase e a implementação de um Melaço Óptico como etapa extra de esfriamento. Nessas condições, obtivemos uma nuvem que pode ser apropriada para realizar estudos de efeitos coletivos, podendo transicionar desde o regime diluído até o regime denso. Os primeiros experimentos realizados, uma vez preparado nosso ensemble atômico, consistem em medir a transmissão coerente de um feixe de baixa intensidade pela nuvem. Para isso, é usada uma luz incidente próxima da ressonância de uma transição dipolar do tipo J = 0 ↔ J = 1 do 88Sr, que interage com uma região homogênea da amostra. Simulações desse tipo de processo podem ser realizadas usando o Modelo de Dipolos Acoplados, o qual descreve a resposta total do espalhamento da luz pela amostra considerando as interações dipolo-dipolo mediadas pela luz. Com este trabalho, pretendemos avançar no entendimento dos efeitos de densidade, realizando uma comparação entre a resposta coerente óptica da nuvem densa e a teoria baseada no Modelo de Dipolos Acoplados.Biblioteca Digitais de Teses e Dissertações da USPCourteille, Philippe WilhelmTeixeira, Raul CelistrinoFernández, Marcia Frómeta2023-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T21:03:03Zoai:teses.usp.br:tde-04032024-105521Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T21:03:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Coherent light-matter interaction in dense atomic clouds Interação coerente luz-matéria em amostras atômicas densas |
title |
Coherent light-matter interaction in dense atomic clouds |
spellingShingle |
Coherent light-matter interaction in dense atomic clouds Fernández, Marcia Frómeta Armadilha óptica de dipolo Coupled dipole model Dense regime Modelo de dipolos acoplados Optical dipole trap Regime denso |
title_short |
Coherent light-matter interaction in dense atomic clouds |
title_full |
Coherent light-matter interaction in dense atomic clouds |
title_fullStr |
Coherent light-matter interaction in dense atomic clouds |
title_full_unstemmed |
Coherent light-matter interaction in dense atomic clouds |
title_sort |
Coherent light-matter interaction in dense atomic clouds |
author |
Fernández, Marcia Frómeta |
author_facet |
Fernández, Marcia Frómeta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Courteille, Philippe Wilhelm Teixeira, Raul Celistrino |
dc.contributor.author.fl_str_mv |
Fernández, Marcia Frómeta |
dc.subject.por.fl_str_mv |
Armadilha óptica de dipolo Coupled dipole model Dense regime Modelo de dipolos acoplados Optical dipole trap Regime denso |
topic |
Armadilha óptica de dipolo Coupled dipole model Dense regime Modelo de dipolos acoplados Optical dipole trap Regime denso |
description |
The main objective of this research is to study a particular case of light-matter interaction: the scattering of light in dense atomic samples. The regime of high atomic densities is represented by samples where the distance between neighboring atoms is on the order of the wavelength associated with the atomic transition. In this regime, short-range atomic interactions cannot be neglected, and in these systems, we expect to observe significant modifications in collective effects such as subradiance or superradiance. Overall, the propagation of light through this type of system is not well-known to the scientific community, and the existing models work to describe very specific situations. To pave the way for achieving our overall goal, this work proposes an experimental setup to obtain a dense cloud of 88Sr, which is the chemical species we work with in our laboratory. For this purpose, atoms previously trapped using a Magneto-Optical Trap are transferred to a Crossed Optical Dipole Trap. During the optimization and characterization of the optical trap, problems were encountered in producing an image with quantitative information of the atomic ensemble and in transferring a large number of atoms in a very small trapping volume. These problems were resolved with the implementation of a Phase Contrast Imaging system and the implementation of an Optical Molasses as an additional cooling step. Under these conditions, we obtained a cloud that can be suitable for conducting studies on collective effects, transitioning from the dilute to the dense regime. The initial experiments, once our atomic ensemble was prepared, involve measuring the coherent transmission of a low-intensity beam through the cloud. For this purpose, incident light near the resonance of a dipolar transition of the type J = 0 ↔ J = 1 of 88Sr is used, interacting with a homogeneous region of the sample. Simulations of this type of process can be performed using the Coupled Dipole Model, which describes the overall response of light scattering by the sample considering dipole-dipole interactions mediated by light. With this work, we aim to advance the understanding of density effects by comparing the coherent optical response of the dense cloud with the theory based on the Coupled Dipole Model. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256652131074048 |