Coherent light-matter interaction in dense atomic clouds

Detalhes bibliográficos
Autor(a) principal: Fernández, Marcia Frómeta
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/
Resumo: The main objective of this research is to study a particular case of light-matter interaction: the scattering of light in dense atomic samples. The regime of high atomic densities is represented by samples where the distance between neighboring atoms is on the order of the wavelength associated with the atomic transition. In this regime, short-range atomic interactions cannot be neglected, and in these systems, we expect to observe significant modifications in collective effects such as subradiance or superradiance. Overall, the propagation of light through this type of system is not well-known to the scientific community, and the existing models work to describe very specific situations. To pave the way for achieving our overall goal, this work proposes an experimental setup to obtain a dense cloud of 88Sr, which is the chemical species we work with in our laboratory. For this purpose, atoms previously trapped using a Magneto-Optical Trap are transferred to a Crossed Optical Dipole Trap. During the optimization and characterization of the optical trap, problems were encountered in producing an image with quantitative information of the atomic ensemble and in transferring a large number of atoms in a very small trapping volume. These problems were resolved with the implementation of a Phase Contrast Imaging system and the implementation of an Optical Molasses as an additional cooling step. Under these conditions, we obtained a cloud that can be suitable for conducting studies on collective effects, transitioning from the dilute to the dense regime. The initial experiments, once our atomic ensemble was prepared, involve measuring the coherent transmission of a low-intensity beam through the cloud. For this purpose, incident light near the resonance of a dipolar transition of the type J = 0 ↔ J = 1 of 88Sr is used, interacting with a homogeneous region of the sample. Simulations of this type of process can be performed using the Coupled Dipole Model, which describes the overall response of light scattering by the sample considering dipole-dipole interactions mediated by light. With this work, we aim to advance the understanding of density effects by comparing the coherent optical response of the dense cloud with the theory based on the Coupled Dipole Model.
id USP_1248d1eefcc63cb49a120c64a4b24156
oai_identifier_str oai:teses.usp.br:tde-04032024-105521
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Coherent light-matter interaction in dense atomic cloudsInteração coerente luz-matéria em amostras atômicas densasArmadilha óptica de dipoloCoupled dipole modelDense regimeModelo de dipolos acopladosOptical dipole trapRegime densoThe main objective of this research is to study a particular case of light-matter interaction: the scattering of light in dense atomic samples. The regime of high atomic densities is represented by samples where the distance between neighboring atoms is on the order of the wavelength associated with the atomic transition. In this regime, short-range atomic interactions cannot be neglected, and in these systems, we expect to observe significant modifications in collective effects such as subradiance or superradiance. Overall, the propagation of light through this type of system is not well-known to the scientific community, and the existing models work to describe very specific situations. To pave the way for achieving our overall goal, this work proposes an experimental setup to obtain a dense cloud of 88Sr, which is the chemical species we work with in our laboratory. For this purpose, atoms previously trapped using a Magneto-Optical Trap are transferred to a Crossed Optical Dipole Trap. During the optimization and characterization of the optical trap, problems were encountered in producing an image with quantitative information of the atomic ensemble and in transferring a large number of atoms in a very small trapping volume. These problems were resolved with the implementation of a Phase Contrast Imaging system and the implementation of an Optical Molasses as an additional cooling step. Under these conditions, we obtained a cloud that can be suitable for conducting studies on collective effects, transitioning from the dilute to the dense regime. The initial experiments, once our atomic ensemble was prepared, involve measuring the coherent transmission of a low-intensity beam through the cloud. For this purpose, incident light near the resonance of a dipolar transition of the type J = 0 ↔ J = 1 of 88Sr is used, interacting with a homogeneous region of the sample. Simulations of this type of process can be performed using the Coupled Dipole Model, which describes the overall response of light scattering by the sample considering dipole-dipole interactions mediated by light. With this work, we aim to advance the understanding of density effects by comparing the coherent optical response of the dense cloud with the theory based on the Coupled Dipole Model.O principal objetivo desta pesquisa é estudar um caso particular da interação luz-matéria: o espalhamento da luz em amostras atômicas densas. O regime de altas densidades atômicas está representado por amostras onde a distância entre átomos vizinhos é da ordem do comprimento de onda associado à transição atômica. Neste regime, as interações de curto alcance não podem ser negligenciadas, e esperamos observar modificações importantes em efeitos coletivos como a subradiância ou superradiância. No geral, a propagação da luz por esse tipo de sistema é um processo não muito conhecido pela comunidade científica, e os modelos existentes funcionam para descrever situações muito específicas. Para abrir caminho ao cumprimento do nosso objetivo geral, neste trabalho é proposto um arranjo experimental para obter uma nuvem densa de 88Sr, que é a espécie química com a qual trabalhamos em nosso laboratório. Para isso, os átomos previamente aprisionados usando uma Armadilha Magneto-Óptica são transferidos para uma Armadilha Óptica de Dipolo cruzada. Durante o processo de otimização e caracterização da armadilha óptica, foram enfrentados problemas para produzir uma imagem com informação quantitativa do ensemble atômico e para transferir um número grande de átomos num volume de aprisionamento muito pequeno. Esses problemas foram resolvidos com a implementação de um sistema de Imagem de Contraste de Fase e a implementação de um Melaço Óptico como etapa extra de esfriamento. Nessas condições, obtivemos uma nuvem que pode ser apropriada para realizar estudos de efeitos coletivos, podendo transicionar desde o regime diluído até o regime denso. Os primeiros experimentos realizados, uma vez preparado nosso ensemble atômico, consistem em medir a transmissão coerente de um feixe de baixa intensidade pela nuvem. Para isso, é usada uma luz incidente próxima da ressonância de uma transição dipolar do tipo J = 0 ↔ J = 1 do 88Sr, que interage com uma região homogênea da amostra. Simulações desse tipo de processo podem ser realizadas usando o Modelo de Dipolos Acoplados, o qual descreve a resposta total do espalhamento da luz pela amostra considerando as interações dipolo-dipolo mediadas pela luz. Com este trabalho, pretendemos avançar no entendimento dos efeitos de densidade, realizando uma comparação entre a resposta coerente óptica da nuvem densa e a teoria baseada no Modelo de Dipolos Acoplados.Biblioteca Digitais de Teses e Dissertações da USPCourteille, Philippe WilhelmTeixeira, Raul CelistrinoFernández, Marcia Frómeta2023-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T21:03:03Zoai:teses.usp.br:tde-04032024-105521Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T21:03:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Coherent light-matter interaction in dense atomic clouds
Interação coerente luz-matéria em amostras atômicas densas
title Coherent light-matter interaction in dense atomic clouds
spellingShingle Coherent light-matter interaction in dense atomic clouds
Fernández, Marcia Frómeta
Armadilha óptica de dipolo
Coupled dipole model
Dense regime
Modelo de dipolos acoplados
Optical dipole trap
Regime denso
title_short Coherent light-matter interaction in dense atomic clouds
title_full Coherent light-matter interaction in dense atomic clouds
title_fullStr Coherent light-matter interaction in dense atomic clouds
title_full_unstemmed Coherent light-matter interaction in dense atomic clouds
title_sort Coherent light-matter interaction in dense atomic clouds
author Fernández, Marcia Frómeta
author_facet Fernández, Marcia Frómeta
author_role author
dc.contributor.none.fl_str_mv Courteille, Philippe Wilhelm
Teixeira, Raul Celistrino
dc.contributor.author.fl_str_mv Fernández, Marcia Frómeta
dc.subject.por.fl_str_mv Armadilha óptica de dipolo
Coupled dipole model
Dense regime
Modelo de dipolos acoplados
Optical dipole trap
Regime denso
topic Armadilha óptica de dipolo
Coupled dipole model
Dense regime
Modelo de dipolos acoplados
Optical dipole trap
Regime denso
description The main objective of this research is to study a particular case of light-matter interaction: the scattering of light in dense atomic samples. The regime of high atomic densities is represented by samples where the distance between neighboring atoms is on the order of the wavelength associated with the atomic transition. In this regime, short-range atomic interactions cannot be neglected, and in these systems, we expect to observe significant modifications in collective effects such as subradiance or superradiance. Overall, the propagation of light through this type of system is not well-known to the scientific community, and the existing models work to describe very specific situations. To pave the way for achieving our overall goal, this work proposes an experimental setup to obtain a dense cloud of 88Sr, which is the chemical species we work with in our laboratory. For this purpose, atoms previously trapped using a Magneto-Optical Trap are transferred to a Crossed Optical Dipole Trap. During the optimization and characterization of the optical trap, problems were encountered in producing an image with quantitative information of the atomic ensemble and in transferring a large number of atoms in a very small trapping volume. These problems were resolved with the implementation of a Phase Contrast Imaging system and the implementation of an Optical Molasses as an additional cooling step. Under these conditions, we obtained a cloud that can be suitable for conducting studies on collective effects, transitioning from the dilute to the dense regime. The initial experiments, once our atomic ensemble was prepared, involve measuring the coherent transmission of a low-intensity beam through the cloud. For this purpose, incident light near the resonance of a dipolar transition of the type J = 0 ↔ J = 1 of 88Sr is used, interacting with a homogeneous region of the sample. Simulations of this type of process can be performed using the Coupled Dipole Model, which describes the overall response of light scattering by the sample considering dipole-dipole interactions mediated by light. With this work, we aim to advance the understanding of density effects by comparing the coherent optical response of the dense cloud with the theory based on the Coupled Dipole Model.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-04032024-105521/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256652131074048