Processo de médias aleatórias com configuração inicial parabólica
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-115615/ |
Resumo: | Este trabalho estuda as flutuações, temporal e espacial, do processo de médias aleatórias (PMA), que representa um sistema de alturas, denotado por 'n ind.t' e com configurações em 'R pot.zd, assumindo como configuração inicial uma superfície parabólica de dimensão d passando pela origem. Mostra que no caso simétrico e com alcance finito, as flutuações da altura do sítio x se estabilizam apenas quando d > ou = 5 e são da ordem de 't pot.1-d/4', se d = 1,2 ou 3 e da ordem de '(log t) pot.1/2' se d = 4, mas, no caso viesado, 'n ind.t(x)' flutua sempre em todas as dimensões. Estuda também o processo visto da altura da origem, denotado por 'n ind,t', no caso simétrico e de alcance 1. Prova que as flutuações de 'n ind.t(x)' são limitadas quando d > ou = 3 e que este converge fracamente para uma superfície aleatória n(x), quando 't seta infinito', que é invariante para o processo de médias aleatórias. Os resultados são obtidos para um processo a tempo contínuo, considera-se aproximação através de uma família de processos a tempo discreto |
id |
USP_14ab6c3fff4af54a5722163c8de2e985 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20220712-115615 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Processo de médias aleatórias com configuração inicial parabólicanot availableProcessos EstocásticosSuperfícies AleatóriasEste trabalho estuda as flutuações, temporal e espacial, do processo de médias aleatórias (PMA), que representa um sistema de alturas, denotado por 'n ind.t' e com configurações em 'R pot.zd, assumindo como configuração inicial uma superfície parabólica de dimensão d passando pela origem. Mostra que no caso simétrico e com alcance finito, as flutuações da altura do sítio x se estabilizam apenas quando d > ou = 5 e são da ordem de 't pot.1-d/4', se d = 1,2 ou 3 e da ordem de '(log t) pot.1/2' se d = 4, mas, no caso viesado, 'n ind.t(x)' flutua sempre em todas as dimensões. Estuda também o processo visto da altura da origem, denotado por 'n ind,t', no caso simétrico e de alcance 1. Prova que as flutuações de 'n ind.t(x)' são limitadas quando d > ou = 3 e que este converge fracamente para uma superfície aleatória n(x), quando 't seta infinito', que é invariante para o processo de médias aleatórias. Os resultados são obtidos para um processo a tempo contínuo, considera-se aproximação através de uma família de processos a tempo discretoThis thesis studies the time and space fluctuations of a d-dimensional parabolic surface submitted to a random averaging ptocess (RAP). We show that in a symmetric finite range case the time fluctuations are bounded in 'd > ou = 5. In d = 1,3 and 3 they are of the order 't pot.1-d/4', respectively. In the d = 4, they are of the order '(log t) pot.1/2'. In a biased case, they are of the order 't pot.5/4 in d = 1', 't(log t) pot.1/2 in d = 2' and 't in d > ou = 3'. We also study the time fluctuations of the surface as seen from the height of the origin and show that in d = 3 and 4 they remain bounded for a symmetric nearest neighbor case. For all bounded fluctuation cases, we obtain a stationary measure as a time limit of the evolution. We also obtain the magnitude and shape of the spatial fluctuations of that measure. The results are first obtained for diiscrete time versions of the dynamics. We use discretizations of the continuous time dynamics to get the results from the discrete case by approximationBiblioteca Digitais de Teses e Dissertações da USPFontes, Luiz Renato GonçalvesMedeiros, Deborah Pereira de2001-03-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-115615/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T14:47:02Zoai:teses.usp.br:tde-20220712-115615Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T14:47:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Processo de médias aleatórias com configuração inicial parabólica not available |
title |
Processo de médias aleatórias com configuração inicial parabólica |
spellingShingle |
Processo de médias aleatórias com configuração inicial parabólica Medeiros, Deborah Pereira de Processos Estocásticos Superfícies Aleatórias |
title_short |
Processo de médias aleatórias com configuração inicial parabólica |
title_full |
Processo de médias aleatórias com configuração inicial parabólica |
title_fullStr |
Processo de médias aleatórias com configuração inicial parabólica |
title_full_unstemmed |
Processo de médias aleatórias com configuração inicial parabólica |
title_sort |
Processo de médias aleatórias com configuração inicial parabólica |
author |
Medeiros, Deborah Pereira de |
author_facet |
Medeiros, Deborah Pereira de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fontes, Luiz Renato Gonçalves |
dc.contributor.author.fl_str_mv |
Medeiros, Deborah Pereira de |
dc.subject.por.fl_str_mv |
Processos Estocásticos Superfícies Aleatórias |
topic |
Processos Estocásticos Superfícies Aleatórias |
description |
Este trabalho estuda as flutuações, temporal e espacial, do processo de médias aleatórias (PMA), que representa um sistema de alturas, denotado por 'n ind.t' e com configurações em 'R pot.zd, assumindo como configuração inicial uma superfície parabólica de dimensão d passando pela origem. Mostra que no caso simétrico e com alcance finito, as flutuações da altura do sítio x se estabilizam apenas quando d > ou = 5 e são da ordem de 't pot.1-d/4', se d = 1,2 ou 3 e da ordem de '(log t) pot.1/2' se d = 4, mas, no caso viesado, 'n ind.t(x)' flutua sempre em todas as dimensões. Estuda também o processo visto da altura da origem, denotado por 'n ind,t', no caso simétrico e de alcance 1. Prova que as flutuações de 'n ind.t(x)' são limitadas quando d > ou = 3 e que este converge fracamente para uma superfície aleatória n(x), quando 't seta infinito', que é invariante para o processo de médias aleatórias. Os resultados são obtidos para um processo a tempo contínuo, considera-se aproximação através de uma família de processos a tempo discreto |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-03-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-115615/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-115615/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257216480968704 |