Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.

Detalhes bibliográficos
Autor(a) principal: Olivera, Marcela Irene Merklen
Data de Publicação: 2002
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/
Resumo: Trabalhamos com funções definidas em Rn que tomam valores numa C*-álgebra A. Consideramos o conjunto SA (Rn) das funções de Schwartz, (de decrescimento rápido), com norma dada por ||f||2 = ||?f(x)*f(x)dx||½. Denotamos por CB?(R2n,A) o conjunto das funções C? com todas as suas derivadas limitadas. Provamos que os operadores pseudo-diferenciais com símbolo em CB?(R2n,A) são contínuos em SA(Rn) com a norma || ? ||2, fazendo uma generalização de [10]. Rieffel prova em [1] que CB?(Rn,A) age em SA(Rn) por meio de um produto deformado, induzido por uma matriz anti-simétrica, J, como segue: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv, (integral oscilatória). Dizemos que um operador S é Heisenberg-suave se as aplicações z |-> T-zSTz e ? |-> M-?SM?, z,? E Rn, são C? onde Tzg(x)=g(x-z) e M?g(x)=ei?xg(x). No final do capítulo 4 de [1], Rieffel propõe uma conjectura: que todos os operadores \"adjuntáveis\" em SA(Rn), Heisenberg-suaves, que comutam com a representação regular à direita de CB?(Rn,A), RGf = f×JG, são os operadores do tipo LF. Provamos este resultado para o caso A=|C, ver [14], usando a caracterização de Cordes (ver [17]) dos operadores Heisenberg-suaves em L2(Rn) como sendo os operadores pseudo-diferenciais com símbolo em CB?(R2n). Também é provado neste trabalho que, se vale uma generalização natural da caracterização de Cordes, a conjectura de Rieffel é verdadeira.
id USP_151d077deda5d1c87352b72b5b6daa21
oai_identifier_str oai:teses.usp.br:tde-04092003-154149
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.C*-algebraC*-algebrasfunções de SchwartzRieffelRieffelSchwartz functionsTrabalhamos com funções definidas em Rn que tomam valores numa C*-álgebra A. Consideramos o conjunto SA (Rn) das funções de Schwartz, (de decrescimento rápido), com norma dada por ||f||2 = ||?f(x)*f(x)dx||½. Denotamos por CB?(R2n,A) o conjunto das funções C? com todas as suas derivadas limitadas. Provamos que os operadores pseudo-diferenciais com símbolo em CB?(R2n,A) são contínuos em SA(Rn) com a norma || ? ||2, fazendo uma generalização de [10]. Rieffel prova em [1] que CB?(Rn,A) age em SA(Rn) por meio de um produto deformado, induzido por uma matriz anti-simétrica, J, como segue: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv, (integral oscilatória). Dizemos que um operador S é Heisenberg-suave se as aplicações z |-> T-zSTz e ? |-> M-?SM?, z,? E Rn, são C? onde Tzg(x)=g(x-z) e M?g(x)=ei?xg(x). No final do capítulo 4 de [1], Rieffel propõe uma conjectura: que todos os operadores \"adjuntáveis\" em SA(Rn), Heisenberg-suaves, que comutam com a representação regular à direita de CB?(Rn,A), RGf = f×JG, são os operadores do tipo LF. Provamos este resultado para o caso A=|C, ver [14], usando a caracterização de Cordes (ver [17]) dos operadores Heisenberg-suaves em L2(Rn) como sendo os operadores pseudo-diferenciais com símbolo em CB?(R2n). Também é provado neste trabalho que, se vale uma generalização natural da caracterização de Cordes, a conjectura de Rieffel é verdadeira.We work with functions defined on Rn with values in a C*-algebra A. We consider the set SA(Rn) of Schwartz functions (rapidly decreasing), with norm given by ||f||2 = ||?f(x)*f(x)dx||½ . We denote CB?(R2n,A) the set of functions which are C? and have all their derivatives bounded. We prove that pseudo-differential operators with symbol in CB?(R2n,A) are continuous on SA(Rn) with the norm || · ||2, thus generalizing the result in [10]. Rieffel proves in [1] that CB?(Rn,A) acts on SA(Rn) through a deformed product induced by an anti-symmetric matrix, J, as follows: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv (an oscillatory integral). We say that an operator S is Heisenberg-smooth if the maps z |-> T-zSTz and ? |-> M-?SM?, z,? E Rn are C?; where Tzg(x)=g(x-z) and where M?g(x)=ei?xg(x). At the end of chapter 4 of [1], Rieffel proposes a conjecture: that all "adjointable" operators in SA(Rn) that are Heisenberg-smooth and that commute with the right-regular representation of CB?(Rn,A), RGf = f×JG, are operators of type LF . We proved this result for the case A = |C in [14], using Cordes\' characterization of Heisenberg-smooth operators on L2(Rn) as being the pseudo-differential operators with symbol in CB?(R2n). It is also proved in this thesis that, if a natural generalization of Cordes\' characterization is valid, then the Rieffel conjecture is true.Biblioteca Digitais de Teses e Dissertações da USPCerri, CristinaMelo, Severino Toscano do RegoOlivera, Marcela Irene Merklen2002-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-16T20:48:23Zoai:teses.usp.br:tde-04092003-154149Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-16T20:48:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
title Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
spellingShingle Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
Olivera, Marcela Irene Merklen
C*-algebra
C*-algebras
funções de Schwartz
Rieffel
Rieffel
Schwartz functions
title_short Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
title_full Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
title_fullStr Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
title_full_unstemmed Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
title_sort Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
author Olivera, Marcela Irene Merklen
author_facet Olivera, Marcela Irene Merklen
author_role author
dc.contributor.none.fl_str_mv Cerri, Cristina
Melo, Severino Toscano do Rego
dc.contributor.author.fl_str_mv Olivera, Marcela Irene Merklen
dc.subject.por.fl_str_mv C*-algebra
C*-algebras
funções de Schwartz
Rieffel
Rieffel
Schwartz functions
topic C*-algebra
C*-algebras
funções de Schwartz
Rieffel
Rieffel
Schwartz functions
description Trabalhamos com funções definidas em Rn que tomam valores numa C*-álgebra A. Consideramos o conjunto SA (Rn) das funções de Schwartz, (de decrescimento rápido), com norma dada por ||f||2 = ||?f(x)*f(x)dx||½. Denotamos por CB?(R2n,A) o conjunto das funções C? com todas as suas derivadas limitadas. Provamos que os operadores pseudo-diferenciais com símbolo em CB?(R2n,A) são contínuos em SA(Rn) com a norma || ? ||2, fazendo uma generalização de [10]. Rieffel prova em [1] que CB?(Rn,A) age em SA(Rn) por meio de um produto deformado, induzido por uma matriz anti-simétrica, J, como segue: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv, (integral oscilatória). Dizemos que um operador S é Heisenberg-suave se as aplicações z |-> T-zSTz e ? |-> M-?SM?, z,? E Rn, são C? onde Tzg(x)=g(x-z) e M?g(x)=ei?xg(x). No final do capítulo 4 de [1], Rieffel propõe uma conjectura: que todos os operadores \"adjuntáveis\" em SA(Rn), Heisenberg-suaves, que comutam com a representação regular à direita de CB?(Rn,A), RGf = f×JG, são os operadores do tipo LF. Provamos este resultado para o caso A=|C, ver [14], usando a caracterização de Cordes (ver [17]) dos operadores Heisenberg-suaves em L2(Rn) como sendo os operadores pseudo-diferenciais com símbolo em CB?(R2n). Também é provado neste trabalho que, se vale uma generalização natural da caracterização de Cordes, a conjectura de Rieffel é verdadeira.
publishDate 2002
dc.date.none.fl_str_mv 2002-09-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256668210987008