Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal

Detalhes bibliográficos
Autor(a) principal: Salum, Lívia de Barros
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-09042008-121318/
Resumo: Os estrógenos exercem importantes efeitos fisiológicos através dos dois subtipos dos receptores de estrógeno humanos (hERs), alfa (hER?) e beta (hER?). Enquanto hER? é um importante alvo macromolecular no desenvolvimento de fármacos para o tratamento do câncer de mama, hER? é um alvo promissor no desenvolvimento de agentes terapêuticos para a terapia de reposição hormonal. O progresso no planejamento de moduladores apresentando maior potência, afinidade e seletividade, entretanto, requer a otimização múltipla de interações intermoleculares fármaco-receptor. A Química Medicinal moderna, de forte caráter multidisciplinar, fornece um arsenal de alternativas e estratégias úteis no processo de planejamento de novos fármacos. As ferramentas de modelagem molecular e de estudos das relações quantitativas entre a estrutura e atividade (QSAR) estão integradas a esse processo, sendo de extremo valor na busca por moléculas bioativas com propriedades múltiplas otimizadas. Para a realização deste trabalho, conjuntos padrões de dados foram organizados para diferentes classes químicas de potentes moduladores dos ERs. Esses conjuntos padronizados para os subtipos do hER, contendo a informação qualificada sobre a estrutura química dos ligantes associada a medida da propriedade farmacológica correspondente, estabeleceram as bases para o desenvolvimento de modelos empregando os métodos holograma QSAR, CoMFA e GRID/PCA. Os modelos finais de HQSAR e CoMFA possuem elevada consistência interna e externa, apresentando bom poder de correlação e predição das propriedades alvo. Juntamente com as informações obtidas pelos mapas de contribuição 2D e de contorno 3D, os modelos de QSAR e GRID/PCA construídos são guias químico-medicinais úteis no planejamento de novos moduladores seletivos do ER possuindo maior afinidade e potência.
id USP_16af92877233b6aefb31813101f1c0ca
oai_identifier_str oai:teses.usp.br:tde-09042008-121318
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonalIn silico studies in the design of new drug candidates for breast cancer treatment and hormone replacement therapyCoMFACoMFADrug designEstrogen receptorHQSARHQSARPlanejamento de fármacosReceptor de estrógenoOs estrógenos exercem importantes efeitos fisiológicos através dos dois subtipos dos receptores de estrógeno humanos (hERs), alfa (hER?) e beta (hER?). Enquanto hER? é um importante alvo macromolecular no desenvolvimento de fármacos para o tratamento do câncer de mama, hER? é um alvo promissor no desenvolvimento de agentes terapêuticos para a terapia de reposição hormonal. O progresso no planejamento de moduladores apresentando maior potência, afinidade e seletividade, entretanto, requer a otimização múltipla de interações intermoleculares fármaco-receptor. A Química Medicinal moderna, de forte caráter multidisciplinar, fornece um arsenal de alternativas e estratégias úteis no processo de planejamento de novos fármacos. As ferramentas de modelagem molecular e de estudos das relações quantitativas entre a estrutura e atividade (QSAR) estão integradas a esse processo, sendo de extremo valor na busca por moléculas bioativas com propriedades múltiplas otimizadas. Para a realização deste trabalho, conjuntos padrões de dados foram organizados para diferentes classes químicas de potentes moduladores dos ERs. Esses conjuntos padronizados para os subtipos do hER, contendo a informação qualificada sobre a estrutura química dos ligantes associada a medida da propriedade farmacológica correspondente, estabeleceram as bases para o desenvolvimento de modelos empregando os métodos holograma QSAR, CoMFA e GRID/PCA. Os modelos finais de HQSAR e CoMFA possuem elevada consistência interna e externa, apresentando bom poder de correlação e predição das propriedades alvo. Juntamente com as informações obtidas pelos mapas de contribuição 2D e de contorno 3D, os modelos de QSAR e GRID/PCA construídos são guias químico-medicinais úteis no planejamento de novos moduladores seletivos do ER possuindo maior afinidade e potência.Estrogens exert important physiological effects through two human estrogen receptor subtypes (hERs), alpha (hER?) and beta (hER?). While hER? is a macromolecular target of great importance for breast cancer therapy, hER? is an attractive drug target for the development of novel therapeutic agents for hormone replacement therapy. Progress towards the design of modulators having improved potency, affinity and selectivity requires the optimization of multiple ligand-receptor interactions. The strong multidisciplinary character of modern Medicinal Chemistry supplies a rich arsenal of useful rational strategies for the design of new drug candidates. Molecular modeling tools and quantitative structure-activity relationships (QSAR) are integrated into the drug design process in the search of bioactive molecules having optimized properties. In this study, standard data sets were organized for different chemical classes of ER modulators, integrating the qualified information about chemical structure associated to the corresponding pharmacological property. The data sets established the scientific basis for the development of models employing the hologram QSAR, CoMFA and GRID/PCA methods. The final HQSAR and CoMFA models possess high internal and external consistency, with good correlative and predictive power. The generated QSAR and GRID/PCA models as well as the information gathered from the 3D contour maps provide useful guidelines for the design of new selective ER modulators having improved affinity and potency.Biblioteca Digitais de Teses e Dissertações da USPAndricopulo, Adriano DefiniSalum, Lívia de Barros2007-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-09042008-121318/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-09042008-121318Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
In silico studies in the design of new drug candidates for breast cancer treatment and hormone replacement therapy
title Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
spellingShingle Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
Salum, Lívia de Barros
CoMFA
CoMFA
Drug design
Estrogen receptor
HQSAR
HQSAR
Planejamento de fármacos
Receptor de estrógeno
title_short Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
title_full Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
title_fullStr Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
title_full_unstemmed Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
title_sort Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal
author Salum, Lívia de Barros
author_facet Salum, Lívia de Barros
author_role author
dc.contributor.none.fl_str_mv Andricopulo, Adriano Defini
dc.contributor.author.fl_str_mv Salum, Lívia de Barros
dc.subject.por.fl_str_mv CoMFA
CoMFA
Drug design
Estrogen receptor
HQSAR
HQSAR
Planejamento de fármacos
Receptor de estrógeno
topic CoMFA
CoMFA
Drug design
Estrogen receptor
HQSAR
HQSAR
Planejamento de fármacos
Receptor de estrógeno
description Os estrógenos exercem importantes efeitos fisiológicos através dos dois subtipos dos receptores de estrógeno humanos (hERs), alfa (hER?) e beta (hER?). Enquanto hER? é um importante alvo macromolecular no desenvolvimento de fármacos para o tratamento do câncer de mama, hER? é um alvo promissor no desenvolvimento de agentes terapêuticos para a terapia de reposição hormonal. O progresso no planejamento de moduladores apresentando maior potência, afinidade e seletividade, entretanto, requer a otimização múltipla de interações intermoleculares fármaco-receptor. A Química Medicinal moderna, de forte caráter multidisciplinar, fornece um arsenal de alternativas e estratégias úteis no processo de planejamento de novos fármacos. As ferramentas de modelagem molecular e de estudos das relações quantitativas entre a estrutura e atividade (QSAR) estão integradas a esse processo, sendo de extremo valor na busca por moléculas bioativas com propriedades múltiplas otimizadas. Para a realização deste trabalho, conjuntos padrões de dados foram organizados para diferentes classes químicas de potentes moduladores dos ERs. Esses conjuntos padronizados para os subtipos do hER, contendo a informação qualificada sobre a estrutura química dos ligantes associada a medida da propriedade farmacológica correspondente, estabeleceram as bases para o desenvolvimento de modelos empregando os métodos holograma QSAR, CoMFA e GRID/PCA. Os modelos finais de HQSAR e CoMFA possuem elevada consistência interna e externa, apresentando bom poder de correlação e predição das propriedades alvo. Juntamente com as informações obtidas pelos mapas de contribuição 2D e de contorno 3D, os modelos de QSAR e GRID/PCA construídos são guias químico-medicinais úteis no planejamento de novos moduladores seletivos do ER possuindo maior afinidade e potência.
publishDate 2007
dc.date.none.fl_str_mv 2007-08-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-09042008-121318/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-09042008-121318/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256828512043008