Explaining automatic answers generated from knowledge base embedding models.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-07072022-084934/ |
Resumo: | While many chatbot systems rely on templates and shallow semantic analysis, advanced question-answering devices are typically produced with the help of largescale knowledge bases such as DBpedia or Freebase. Information extraction is often based on embedding models that map semantically rich information into low-dimensional vectors, allowing computationally efficient calculations. When producing new facts about the world, embeddings often provide correct answers that are very hard to explain from a human perspective as they are based on operations performed in the low-dimensional vector space, thus bearing no meaning to human users. Although interpretability has become a central concern in machine learning, the literature so far has focused on non-relational classifiers (such as deep neural networks); embeddings, however, require a whole range of different approaches. In this work we improve an existing method designed to provide explanations for predictions made by embedding models. |
id |
USP_16caea3ed6056486a7bc7b1feeddd7e5 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07072022-084934 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Explaining automatic answers generated from knowledge base embedding models.Explicando respostas automáticas geradas por bases de conhecimento baseados em modelos de variáveis latentes.Aprendizado computacionalAprendizado profundoBases de conhecimentoDeep learningGrafos de conhecimentoInterpretabilidadeInterpretabilityKnowledge base embeddingsKnowledge graphsMachine learningModelos de variável latenteWhile many chatbot systems rely on templates and shallow semantic analysis, advanced question-answering devices are typically produced with the help of largescale knowledge bases such as DBpedia or Freebase. Information extraction is often based on embedding models that map semantically rich information into low-dimensional vectors, allowing computationally efficient calculations. When producing new facts about the world, embeddings often provide correct answers that are very hard to explain from a human perspective as they are based on operations performed in the low-dimensional vector space, thus bearing no meaning to human users. Although interpretability has become a central concern in machine learning, the literature so far has focused on non-relational classifiers (such as deep neural networks); embeddings, however, require a whole range of different approaches. In this work we improve an existing method designed to provide explanations for predictions made by embedding models.Atualmente, muitos sistemas de chat automatizados são baseados em templates e análises semânticas superficiais. Sistemas de pergunta-resposta avançados geralmente são construídos sobre bases de conhecimento de larga escala como DBPedia e Freebase. A extração de informações muitas vezes é baseada em modelos de variável latente, onde informações semanticamente ricas são convertidas em representações númericas dentro de espaços vetoriais. Quando utilizados para predizer novos fatos sobre o mundo, estes modelos de variável latente na maioria das vezes são capazes de produzir respostas corretas mas de difícil interpretação sob o ponto de vista humano, dado que são fruto de operações matemáticas dentro deste espaço vetorial. Apesar de interpretabilidade ter se tornado um tema central em aprendizado de máquina, a maioria dos modelos que visam produzir explicações são direcionados para modelos tradicionais e não relacionais (como por exemplo redes neurais profundas); modelos de variável latente para modelagem de bases de conhecimento, no entanto, requerem abordagens totalmente diferentes. Neste trabalho apresentamos um conjunto de melhorias para um modelo existente que visa explicar as predições realizadas por modelos de variável latente para bases de conhecimento.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiRuschel, Andrey2022-04-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-07072022-084934/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:08Zoai:teses.usp.br:tde-07072022-084934Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Explaining automatic answers generated from knowledge base embedding models. Explicando respostas automáticas geradas por bases de conhecimento baseados em modelos de variáveis latentes. |
title |
Explaining automatic answers generated from knowledge base embedding models. |
spellingShingle |
Explaining automatic answers generated from knowledge base embedding models. Ruschel, Andrey Aprendizado computacional Aprendizado profundo Bases de conhecimento Deep learning Grafos de conhecimento Interpretabilidade Interpretability Knowledge base embeddings Knowledge graphs Machine learning Modelos de variável latente |
title_short |
Explaining automatic answers generated from knowledge base embedding models. |
title_full |
Explaining automatic answers generated from knowledge base embedding models. |
title_fullStr |
Explaining automatic answers generated from knowledge base embedding models. |
title_full_unstemmed |
Explaining automatic answers generated from knowledge base embedding models. |
title_sort |
Explaining automatic answers generated from knowledge base embedding models. |
author |
Ruschel, Andrey |
author_facet |
Ruschel, Andrey |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cozman, Fabio Gagliardi |
dc.contributor.author.fl_str_mv |
Ruschel, Andrey |
dc.subject.por.fl_str_mv |
Aprendizado computacional Aprendizado profundo Bases de conhecimento Deep learning Grafos de conhecimento Interpretabilidade Interpretability Knowledge base embeddings Knowledge graphs Machine learning Modelos de variável latente |
topic |
Aprendizado computacional Aprendizado profundo Bases de conhecimento Deep learning Grafos de conhecimento Interpretabilidade Interpretability Knowledge base embeddings Knowledge graphs Machine learning Modelos de variável latente |
description |
While many chatbot systems rely on templates and shallow semantic analysis, advanced question-answering devices are typically produced with the help of largescale knowledge bases such as DBpedia or Freebase. Information extraction is often based on embedding models that map semantically rich information into low-dimensional vectors, allowing computationally efficient calculations. When producing new facts about the world, embeddings often provide correct answers that are very hard to explain from a human perspective as they are based on operations performed in the low-dimensional vector space, thus bearing no meaning to human users. Although interpretability has become a central concern in machine learning, the literature so far has focused on non-relational classifiers (such as deep neural networks); embeddings, however, require a whole range of different approaches. In this work we improve an existing method designed to provide explanations for predictions made by embedding models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-07072022-084934/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-07072022-084934/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256494022590464 |