Caracterização e extensões da distribuição Burr XII: propriedades e aplicações

Detalhes bibliográficos
Autor(a) principal: Paranaíba, Patrícia Ferreira
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29102012-085146/
Resumo: A distribuição Burr XII (BXII) possui, como casos particulares, as distribuições normal, log-normal, gama, logística, valor extremo tipo I, entre outras. Por essa razão, ela é considerada uma distribuição flexível no ajuste dos dados. As ideias de Eugene; Lee e Famoye (2002) e Cordeiro e Castro (2011) foram utilizadas para o desenvolvimento de duas novas distribuições de probabilidade a partir da distribuição BXII. Uma delas é denominada beta Burr XII (BBXII) e possui cinco parâmetros. Desenvolveu-se o modelo de regressão log-beta Burr XII (LBBXII). A outra distribuição é denominada de Kumaraswamy Burr XII (KwBXII) e possui cinco parâmetros. A vantagem desses novos modelos reside na capacidade de acomodar várias formas da função risco, além disso, eles também se mostraram úteis na discriminação de modelos. Para cada um dos modelos foram calculados os momentos, função geradora de momentos, os desvios médios, a confiabilidade e a função densidade de probabilidade da estatística de ordem. Foi realizado um estudo de simulação para avaliar o desempenho desses modelos. Para a estimação dos parâmetros, foram utilizados os métodos de máxima verossimilhança e bayesiano e, finalmente, para ilustrar a aplicação das novas distribuições foram analisados alguns conjuntos de dados reais.
id USP_177d4c3dca63bd82622d809be4087b35
oai_identifier_str oai:teses.usp.br:tde-29102012-085146
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Caracterização e extensões da distribuição Burr XII: propriedades e aplicaçõesCharacterization and extensions of the Burr XII distribution: Properties and ApplicationsAnálise de regressão e correlaçãoAnálise de sobrevivênciaBayesian inferenceCensored dataDados censuradosInferência bayesianaLikelihoodRegression analysis and correlationSurvival analysisVerossimilhançaA distribuição Burr XII (BXII) possui, como casos particulares, as distribuições normal, log-normal, gama, logística, valor extremo tipo I, entre outras. Por essa razão, ela é considerada uma distribuição flexível no ajuste dos dados. As ideias de Eugene; Lee e Famoye (2002) e Cordeiro e Castro (2011) foram utilizadas para o desenvolvimento de duas novas distribuições de probabilidade a partir da distribuição BXII. Uma delas é denominada beta Burr XII (BBXII) e possui cinco parâmetros. Desenvolveu-se o modelo de regressão log-beta Burr XII (LBBXII). A outra distribuição é denominada de Kumaraswamy Burr XII (KwBXII) e possui cinco parâmetros. A vantagem desses novos modelos reside na capacidade de acomodar várias formas da função risco, além disso, eles também se mostraram úteis na discriminação de modelos. Para cada um dos modelos foram calculados os momentos, função geradora de momentos, os desvios médios, a confiabilidade e a função densidade de probabilidade da estatística de ordem. Foi realizado um estudo de simulação para avaliar o desempenho desses modelos. Para a estimação dos parâmetros, foram utilizados os métodos de máxima verossimilhança e bayesiano e, finalmente, para ilustrar a aplicação das novas distribuições foram analisados alguns conjuntos de dados reais.The Burr XII (BXII) distribution has as particular cases the normal, lognormal, gamma, logistic and extreme-value type I distributions, among others. For this reason, it is considered a flexible distribution for fitting data. In this paper, the ideas of Eugene; Lee e Famoye (2002) and Cordeiro and Castro (2011) is used to develop two new probability distributions based on the BBXII distribution. The first is called beta Burr XII (BBXII) and has five parameters. Based in these, we develop the extended generalized log-beta Burr XII regression model. The other distribution is called Kumaraswamy Burr XII (KwBXII) and has five parameters. The advantage of these new models rests in their capacity to accommodate various risk function forms. They are also useful in model discrimination. We calculate the moments, moments generating function, mean deviations, reliability and probability density function of the order statistics. A simulation study was conducted to evaluate the performance of these models. To estimate the parameters we use the maximum likelihood and Bayesian methods. Finally, to illustrate the application of the new distributions, we analyze some real data sets.Biblioteca Digitais de Teses e Dissertações da USPOrtega, Edwin Moises MarcosParanaíba, Patrícia Ferreira2012-09-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-29102012-085146/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:32Zoai:teses.usp.br:tde-29102012-085146Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
Characterization and extensions of the Burr XII distribution: Properties and Applications
title Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
spellingShingle Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
Paranaíba, Patrícia Ferreira
Análise de regressão e correlação
Análise de sobrevivência
Bayesian inference
Censored data
Dados censurados
Inferência bayesiana
Likelihood
Regression analysis and correlation
Survival analysis
Verossimilhança
title_short Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
title_full Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
title_fullStr Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
title_full_unstemmed Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
title_sort Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
author Paranaíba, Patrícia Ferreira
author_facet Paranaíba, Patrícia Ferreira
author_role author
dc.contributor.none.fl_str_mv Ortega, Edwin Moises Marcos
dc.contributor.author.fl_str_mv Paranaíba, Patrícia Ferreira
dc.subject.por.fl_str_mv Análise de regressão e correlação
Análise de sobrevivência
Bayesian inference
Censored data
Dados censurados
Inferência bayesiana
Likelihood
Regression analysis and correlation
Survival analysis
Verossimilhança
topic Análise de regressão e correlação
Análise de sobrevivência
Bayesian inference
Censored data
Dados censurados
Inferência bayesiana
Likelihood
Regression analysis and correlation
Survival analysis
Verossimilhança
description A distribuição Burr XII (BXII) possui, como casos particulares, as distribuições normal, log-normal, gama, logística, valor extremo tipo I, entre outras. Por essa razão, ela é considerada uma distribuição flexível no ajuste dos dados. As ideias de Eugene; Lee e Famoye (2002) e Cordeiro e Castro (2011) foram utilizadas para o desenvolvimento de duas novas distribuições de probabilidade a partir da distribuição BXII. Uma delas é denominada beta Burr XII (BBXII) e possui cinco parâmetros. Desenvolveu-se o modelo de regressão log-beta Burr XII (LBBXII). A outra distribuição é denominada de Kumaraswamy Burr XII (KwBXII) e possui cinco parâmetros. A vantagem desses novos modelos reside na capacidade de acomodar várias formas da função risco, além disso, eles também se mostraram úteis na discriminação de modelos. Para cada um dos modelos foram calculados os momentos, função geradora de momentos, os desvios médios, a confiabilidade e a função densidade de probabilidade da estatística de ordem. Foi realizado um estudo de simulação para avaliar o desempenho desses modelos. Para a estimação dos parâmetros, foram utilizados os métodos de máxima verossimilhança e bayesiano e, finalmente, para ilustrar a aplicação das novas distribuições foram analisados alguns conjuntos de dados reais.
publishDate 2012
dc.date.none.fl_str_mv 2012-09-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29102012-085146/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29102012-085146/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257488459563008