Diagramas de influência e teoria estatística

Detalhes bibliográficos
Autor(a) principal: Stern, Rafael Bassi
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-03082009-135643/
Resumo: O objetivo principal deste trabalho foi analisar o controverso conceito de informação em estatística. Para tal, primeiramente foi estudado o conceito de informação dado por Basu. A seguir, a análise foi dividida em três partes: informação nos dados, informação no experimento e diagramas de influência. Nas duas primeiras etapas, sempre se tentou definir propriedades que uma função de informação deveria satisfazer para se enquadrar ao conceito. Na primeira etapa, foi estudado como o princípio da verossimilhança é uma classe de equivalência decorrente de acreditar que experimentos triviais não trazem informação. Também foram apresentadas métricas que satisfazem o princípio da verossimilhança e estas foram usadas para avaliar um exemplo intuitivo. Na segunda etapa, passamos para o problema da informação de um experimento. Foi apresentada a relação da suficiência de Blackwell com experimentos triviais e o conceito usual de suficiência. Também foi analisada a equivalência de Blackwell e a sua relação com o Princípio da Verossimilhança anteriormente estudado. Além disso, as métricas apresentadas para medir a informação de conjuntos de dados foram adaptadas para também medir a informação de um experimento. Finalmente, observou-se que nas etapas anteriores uma série de simetrias mostraram-se como elementos essenciais do conceito de informação. Para ganhar intuição sobre elas, estas foram reescritas através da ferramenta gráfica dos diagramas de influência. Assim, definições como suficiência, suficiência de Blackwell, suficiência mínima e completude foram reapresentadas apenas usando essa ferramenta.
id USP_17b45c1ac6826eeb89a46d1e7b1d83ac
oai_identifier_str oai:teses.usp.br:tde-03082009-135643
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Diagramas de influência e teoria estatísticaInfluence Diagrams and Statistical TheoryAnálise Pré-PosterioriBayesian StatisticsBlackwell SufficiencyDiagramas de InfluênciaEstatística BayesianaInfluence DiagramsInformaçãoInformationPre-Posterior Analysis.Suficiência de BlackwellO objetivo principal deste trabalho foi analisar o controverso conceito de informação em estatística. Para tal, primeiramente foi estudado o conceito de informação dado por Basu. A seguir, a análise foi dividida em três partes: informação nos dados, informação no experimento e diagramas de influência. Nas duas primeiras etapas, sempre se tentou definir propriedades que uma função de informação deveria satisfazer para se enquadrar ao conceito. Na primeira etapa, foi estudado como o princípio da verossimilhança é uma classe de equivalência decorrente de acreditar que experimentos triviais não trazem informação. Também foram apresentadas métricas que satisfazem o princípio da verossimilhança e estas foram usadas para avaliar um exemplo intuitivo. Na segunda etapa, passamos para o problema da informação de um experimento. Foi apresentada a relação da suficiência de Blackwell com experimentos triviais e o conceito usual de suficiência. Também foi analisada a equivalência de Blackwell e a sua relação com o Princípio da Verossimilhança anteriormente estudado. Além disso, as métricas apresentadas para medir a informação de conjuntos de dados foram adaptadas para também medir a informação de um experimento. Finalmente, observou-se que nas etapas anteriores uma série de simetrias mostraram-se como elementos essenciais do conceito de informação. Para ganhar intuição sobre elas, estas foram reescritas através da ferramenta gráfica dos diagramas de influência. Assim, definições como suficiência, suficiência de Blackwell, suficiência mínima e completude foram reapresentadas apenas usando essa ferramenta.The main objective of this work is to analyze the controversial concept of information in Statistics. To do so, firstly the concept of information according to Basu is presented. Next, the analysis is divided in three parts: information in a data set, information in an experiment and influence diagrams. In the first two parts, we always tried to define properties an information function should satisfy in order to be in accordance to the concept of Basu. In the first part, it was studied how the likelihood principle is an equivalence class which follows from believing that trivial experiments do not bring information. Metrics which satisfy the likelihood principle were also presented and used to analyze an intuitive example. In the second part, the problem became that of determining information of a particular experiment. The relation between Blackwell\'s suciency, trivial experiments and classical suciency was presented. Blackwell\'s equivalence was also analyzed and its relationship with the Likelihood Principle was exposed. The metrics presented to evaluate the information in a data set were also adapted to do so with experiments. Finally, in the first parts a number of symmetries were shown as essencial elements of the concept of information. To gain more intuition about these elements, we tried to rewrite them using the graphic tool of influence diagrams. Therefore, definitions as sufficiency, Blackwell\'s sufficiency, minimal sufficiency and completeness were shown again, only using influence diagrams.Biblioteca Digitais de Teses e Dissertações da USPPereira, Carlos Alberto de BragancaStern, Rafael Bassi2009-01-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-03082009-135643/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-14T22:36:02Zoai:teses.usp.br:tde-03082009-135643Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-14T22:36:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Diagramas de influência e teoria estatística
Influence Diagrams and Statistical Theory
title Diagramas de influência e teoria estatística
spellingShingle Diagramas de influência e teoria estatística
Stern, Rafael Bassi
Análise Pré-Posteriori
Bayesian Statistics
Blackwell Sufficiency
Diagramas de Influência
Estatística Bayesiana
Influence Diagrams
Informação
Information
Pre-Posterior Analysis.
Suficiência de Blackwell
title_short Diagramas de influência e teoria estatística
title_full Diagramas de influência e teoria estatística
title_fullStr Diagramas de influência e teoria estatística
title_full_unstemmed Diagramas de influência e teoria estatística
title_sort Diagramas de influência e teoria estatística
author Stern, Rafael Bassi
author_facet Stern, Rafael Bassi
author_role author
dc.contributor.none.fl_str_mv Pereira, Carlos Alberto de Braganca
dc.contributor.author.fl_str_mv Stern, Rafael Bassi
dc.subject.por.fl_str_mv Análise Pré-Posteriori
Bayesian Statistics
Blackwell Sufficiency
Diagramas de Influência
Estatística Bayesiana
Influence Diagrams
Informação
Information
Pre-Posterior Analysis.
Suficiência de Blackwell
topic Análise Pré-Posteriori
Bayesian Statistics
Blackwell Sufficiency
Diagramas de Influência
Estatística Bayesiana
Influence Diagrams
Informação
Information
Pre-Posterior Analysis.
Suficiência de Blackwell
description O objetivo principal deste trabalho foi analisar o controverso conceito de informação em estatística. Para tal, primeiramente foi estudado o conceito de informação dado por Basu. A seguir, a análise foi dividida em três partes: informação nos dados, informação no experimento e diagramas de influência. Nas duas primeiras etapas, sempre se tentou definir propriedades que uma função de informação deveria satisfazer para se enquadrar ao conceito. Na primeira etapa, foi estudado como o princípio da verossimilhança é uma classe de equivalência decorrente de acreditar que experimentos triviais não trazem informação. Também foram apresentadas métricas que satisfazem o princípio da verossimilhança e estas foram usadas para avaliar um exemplo intuitivo. Na segunda etapa, passamos para o problema da informação de um experimento. Foi apresentada a relação da suficiência de Blackwell com experimentos triviais e o conceito usual de suficiência. Também foi analisada a equivalência de Blackwell e a sua relação com o Princípio da Verossimilhança anteriormente estudado. Além disso, as métricas apresentadas para medir a informação de conjuntos de dados foram adaptadas para também medir a informação de um experimento. Finalmente, observou-se que nas etapas anteriores uma série de simetrias mostraram-se como elementos essenciais do conceito de informação. Para ganhar intuição sobre elas, estas foram reescritas através da ferramenta gráfica dos diagramas de influência. Assim, definições como suficiência, suficiência de Blackwell, suficiência mínima e completude foram reapresentadas apenas usando essa ferramenta.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-03082009-135643/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-03082009-135643/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256642098298880