Development of high performance materials based on bamboo through densification process

Detalhes bibliográficos
Autor(a) principal: Kadivar, Marzieh
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/74/74133/tde-12052021-123703/
Resumo: Due to its sustainability, reliability, excellent physical and mechanical properties, and ease of access, bamboo has become an attractive material for engineering applications. However, several problems, such as heterogeneous properties and durability issues, still hinder the widespread use of bamboo as a building material. Therefore, bamboo undergoes special treatments and processes to solve these difficulties. Densification processes can be applied to decrease the heterogeneity of bamboo culms, enhance its mechanical performance, and consequently help using bamboo more efficiently as an industrial material in modern constructions. Reviewing the literature on bamboo densification suggests that initial moisture content, densification degree, temperature, and compression rate are the main effective parameters of the process. Therefore, the experimental studies in this thesis have been oriented to achieve optimal parameters for the densification process. First, the influence of initial moisture content on thermo-mechanical (TM) densification of bamboo was investigated through mechanical, chemical, and physical characterizations. The results of this step showed that the densification process increases density and all related bending properties (modulus of rupture (MOR), modulus of elasticity (MOE), the limit of proportionality (LOP), and specific energy (SE)) of bamboo. The densified samples with 10% initial moisture content presented the best bending properties, with an average MOR, MOE, and dynamic MOE of 318 MPa, 72.2 GPa, and 34.1 GPa respectively, with an increase of 56% for MOR and 41% for MOE in comparison with un-densified counterparts. SEM analysis of bamboo cross-sections showed the rearrangement of fibers, dense compaction of vascular bundles, and partial closure of cavities as results of densification. Physical characterization analyses revealed that the densification process was detrimental to the dimensional stability of bamboo. Therefore, in a second study, TM modification parameters (temperature, compression rate, and pressing time) were optimized to achieve the best dimensional stability through spring back (change of thickness with time after densification), water absorption, and thickness swelling measurements. According to the results of this step, the maximum achievable DD in which no shear failure and no lateral deformation occurs is about 43.6%, which can be obtained by densifying bamboo at 200 °C with a compression rate of 2 mm/min. X-ray densitometry analysis confirmed that the highest value of density, 1.30 g.cm-3, is achieved with a DD of around 50%. The lowest values of spring back, water absorption, and thickness swelling, i.e., 4.72%, 23.80%, and 17.70% respectively, for densified bamboo, are obtained when the densification process is conducted at 200 °C with a compression rate of 6.73 mm/min. Lastly, two examples of application for densified bamboo were suggested; flattened-densified bamboo and bamboo sandwich panel. In conclusion, significant gains in bamboo performance could be obtained with the densification process.
id USP_17fb7b49e6e8567c461e66ccb8e6680a
oai_identifier_str oai:teses.usp.br:tde-12052021-123703
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Development of high performance materials based on bamboo through densification processDesenvolvimento de materiais de alto desempenho a base de bambu através de processo de densificaçãoBambooBambuCaracterização física e mecânicaDendrocalamus asperDendrocalamus asperDensificaçãoDensificationMicroestruturaMicrostructurePhysical and mechanical characterizationProcesso TMTM processDue to its sustainability, reliability, excellent physical and mechanical properties, and ease of access, bamboo has become an attractive material for engineering applications. However, several problems, such as heterogeneous properties and durability issues, still hinder the widespread use of bamboo as a building material. Therefore, bamboo undergoes special treatments and processes to solve these difficulties. Densification processes can be applied to decrease the heterogeneity of bamboo culms, enhance its mechanical performance, and consequently help using bamboo more efficiently as an industrial material in modern constructions. Reviewing the literature on bamboo densification suggests that initial moisture content, densification degree, temperature, and compression rate are the main effective parameters of the process. Therefore, the experimental studies in this thesis have been oriented to achieve optimal parameters for the densification process. First, the influence of initial moisture content on thermo-mechanical (TM) densification of bamboo was investigated through mechanical, chemical, and physical characterizations. The results of this step showed that the densification process increases density and all related bending properties (modulus of rupture (MOR), modulus of elasticity (MOE), the limit of proportionality (LOP), and specific energy (SE)) of bamboo. The densified samples with 10% initial moisture content presented the best bending properties, with an average MOR, MOE, and dynamic MOE of 318 MPa, 72.2 GPa, and 34.1 GPa respectively, with an increase of 56% for MOR and 41% for MOE in comparison with un-densified counterparts. SEM analysis of bamboo cross-sections showed the rearrangement of fibers, dense compaction of vascular bundles, and partial closure of cavities as results of densification. Physical characterization analyses revealed that the densification process was detrimental to the dimensional stability of bamboo. Therefore, in a second study, TM modification parameters (temperature, compression rate, and pressing time) were optimized to achieve the best dimensional stability through spring back (change of thickness with time after densification), water absorption, and thickness swelling measurements. According to the results of this step, the maximum achievable DD in which no shear failure and no lateral deformation occurs is about 43.6%, which can be obtained by densifying bamboo at 200 °C with a compression rate of 2 mm/min. X-ray densitometry analysis confirmed that the highest value of density, 1.30 g.cm-3, is achieved with a DD of around 50%. The lowest values of spring back, water absorption, and thickness swelling, i.e., 4.72%, 23.80%, and 17.70% respectively, for densified bamboo, are obtained when the densification process is conducted at 200 °C with a compression rate of 6.73 mm/min. Lastly, two examples of application for densified bamboo were suggested; flattened-densified bamboo and bamboo sandwich panel. In conclusion, significant gains in bamboo performance could be obtained with the densification process.O bambu se tornou um material atraente para aplicações de engenharia em vista de aspectos relacionados a sua sustentabilidade, confiabilidade, excelentes propriedades físicas e mecânicas e facilidade de acesso. No entanto, vários problemas, como propriedades heterogêneas e questões de durabilidade, ainda impedem o uso generalizado do bambu como material de construção. Portanto, o bambu passa por tratamentos e processos especiais para resolver essas dificuldades. Os processos de densificação podem ser aplicados para diminuir a heterogeneidade dos colmos de bambu, melhorar seu desempenho mecânico e, consequentemente, auxiliar no uso mais eficiente do bambu como material industrial nas construções modernas. A revisão da literatura sobre densificação de bambu sugere que o teor de umidade inicial, o grau de densificação, a temperatura e a taxa de compressão são os principais parâmetros para a eficiência do processo. Os estudos experimentais nesta tese foram orientados para alcançar parâmetros ótimos para o processo de densificação. Primeiramente, a influência do teor de umidade inicial na densificação termo-mecânica (TM) do bambu foi investigada por meio de caracterizações mecânicas, químicas e físicas. Os resultados desta etapa mostraram que o processo de densificação aumenta a densidade e melhora o comportamento frente a solicitações de tração na flexão, a saber: módulo de ruptura (MOR), módulo de elasticidade (MOE), limite de proporcionalidade (LOP) e energia específica (SE) do bambu. As amostras densificadas com 10% de umidade inicial apresentaram as melhores propriedades de flexão, com um MOR médio, MOE e MOE dinâmico de 318 MPa, 27,7 GPa e 34,1 GPa respectivamente, com um aumento de 56% para MOR e 41% para MOE em comparação com as referencias não densificadas. A análise por microscopia eletronica de varedura (MEV) de cortes transversais de bambu mostrou o rearranjo das fibras, compactação densa dos feixes vasculares e fechamento parcial das cavidades como resultados da densificação. Análises de caracterização física revelaram que o processo de densificação foi prejudicial para a estabilidade dimensional do bambu. Portanto, em um segundo estudo, os parâmetros de modificação de TM (temperatura, taxa de compressão e tempo de prensagem) foram otimizados para alcançar a melhor estabilidade dimensional por meio de spring back (recuperação da espessura com o tempo após a densificação), absorção de água e medições de inchamento. De acordo com os resultados desta etapa, a o grau de densificação (DD) máxima alcançável em que nenhuma ruptura por cisalhamento e nenhuma deformação lateral ocorre é de cerca de 43,6%, que pode ser obtida densificando o bambu a 200°C com uma taxa de compressão de 2 mm/min. A análise de densitometria de raios X confirmou que o maior valor de densidade, 1,30 g/cm3, é obtido com um DD em torno de 50%. Os menores valores de spring back, absorção de água e inchamento em espessura, ou seja, 4,72%, 23,80% e 17,70% respectivamente, para o bambu densificado, são obtidos quando o processo de densificação é conduzido a 200°C com uma taxa de compressão de 6,73 mm/min. Por último, foram sugeridos dois exemplos de aplicação para bambu densificado; bambu planificado-densificado e painel sanduíche de bambu. Em conclusão, ganhos significativos na desempenho físico e mecânico do bambu podem ser obtidos com o processo de densificação.Biblioteca Digitais de Teses e Dissertações da USPGhavami, KhosrowSavastano Júnior, HolmerKadivar, Marzieh2020-12-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/74/74133/tde-12052021-123703/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-05-12T19:29:02Zoai:teses.usp.br:tde-12052021-123703Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-12T19:29:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Development of high performance materials based on bamboo through densification process
Desenvolvimento de materiais de alto desempenho a base de bambu através de processo de densificação
title Development of high performance materials based on bamboo through densification process
spellingShingle Development of high performance materials based on bamboo through densification process
Kadivar, Marzieh
Bamboo
Bambu
Caracterização física e mecânica
Dendrocalamus asper
Dendrocalamus asper
Densificação
Densification
Microestrutura
Microstructure
Physical and mechanical characterization
Processo TM
TM process
title_short Development of high performance materials based on bamboo through densification process
title_full Development of high performance materials based on bamboo through densification process
title_fullStr Development of high performance materials based on bamboo through densification process
title_full_unstemmed Development of high performance materials based on bamboo through densification process
title_sort Development of high performance materials based on bamboo through densification process
author Kadivar, Marzieh
author_facet Kadivar, Marzieh
author_role author
dc.contributor.none.fl_str_mv Ghavami, Khosrow
Savastano Júnior, Holmer
dc.contributor.author.fl_str_mv Kadivar, Marzieh
dc.subject.por.fl_str_mv Bamboo
Bambu
Caracterização física e mecânica
Dendrocalamus asper
Dendrocalamus asper
Densificação
Densification
Microestrutura
Microstructure
Physical and mechanical characterization
Processo TM
TM process
topic Bamboo
Bambu
Caracterização física e mecânica
Dendrocalamus asper
Dendrocalamus asper
Densificação
Densification
Microestrutura
Microstructure
Physical and mechanical characterization
Processo TM
TM process
description Due to its sustainability, reliability, excellent physical and mechanical properties, and ease of access, bamboo has become an attractive material for engineering applications. However, several problems, such as heterogeneous properties and durability issues, still hinder the widespread use of bamboo as a building material. Therefore, bamboo undergoes special treatments and processes to solve these difficulties. Densification processes can be applied to decrease the heterogeneity of bamboo culms, enhance its mechanical performance, and consequently help using bamboo more efficiently as an industrial material in modern constructions. Reviewing the literature on bamboo densification suggests that initial moisture content, densification degree, temperature, and compression rate are the main effective parameters of the process. Therefore, the experimental studies in this thesis have been oriented to achieve optimal parameters for the densification process. First, the influence of initial moisture content on thermo-mechanical (TM) densification of bamboo was investigated through mechanical, chemical, and physical characterizations. The results of this step showed that the densification process increases density and all related bending properties (modulus of rupture (MOR), modulus of elasticity (MOE), the limit of proportionality (LOP), and specific energy (SE)) of bamboo. The densified samples with 10% initial moisture content presented the best bending properties, with an average MOR, MOE, and dynamic MOE of 318 MPa, 72.2 GPa, and 34.1 GPa respectively, with an increase of 56% for MOR and 41% for MOE in comparison with un-densified counterparts. SEM analysis of bamboo cross-sections showed the rearrangement of fibers, dense compaction of vascular bundles, and partial closure of cavities as results of densification. Physical characterization analyses revealed that the densification process was detrimental to the dimensional stability of bamboo. Therefore, in a second study, TM modification parameters (temperature, compression rate, and pressing time) were optimized to achieve the best dimensional stability through spring back (change of thickness with time after densification), water absorption, and thickness swelling measurements. According to the results of this step, the maximum achievable DD in which no shear failure and no lateral deformation occurs is about 43.6%, which can be obtained by densifying bamboo at 200 °C with a compression rate of 2 mm/min. X-ray densitometry analysis confirmed that the highest value of density, 1.30 g.cm-3, is achieved with a DD of around 50%. The lowest values of spring back, water absorption, and thickness swelling, i.e., 4.72%, 23.80%, and 17.70% respectively, for densified bamboo, are obtained when the densification process is conducted at 200 °C with a compression rate of 6.73 mm/min. Lastly, two examples of application for densified bamboo were suggested; flattened-densified bamboo and bamboo sandwich panel. In conclusion, significant gains in bamboo performance could be obtained with the densification process.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/74/74133/tde-12052021-123703/
url https://www.teses.usp.br/teses/disponiveis/74/74133/tde-12052021-123703/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256894372052992