Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho

Detalhes bibliográficos
Autor(a) principal: Romualdo, Liliane Maria
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/74/74131/tde-10072013-085725/
Resumo: Um sistema de visão artificial (SVA) para diagnose nutricional de milho, baseado em análise de imagens de folhas foi recentemente proposto pelo GCC-IFSC e Agrárias-FZEA/USP. O objetivo do estudo foi avaliar o estado nutricional do milho cultivado em casa de vegetação em solução nutritiva, com deficiência e suficiência nutricionais induzidas de nitrogênio (N), fósforo (P), potássio (K) e manganês (Mn) utilizando visão artificial, e posteriormente em campo visando validar o diagnóstico pelo sistema de visão artificial desenvolvido. As doses dos nutrientes foram constituídas pela omissão, 1/5, 2/5 e a dose completa, combinadas em três estádios de desenvolvimento do milho (V4, V7 e R1), com quatro repetições. O experimento foi individual para cada elemento. Em cada época foram coletadas imagens de folhas indicativas do estádio (FI), folhas velhas (FV) para o N, P e K e folhas novas para o Mn, que foram primeiramente digitalizadas em 1200 dpi, e em seguida encaminhadas para serem analisadas quimicamente. Também foram avaliadas nas plantas, as variáveis biométricas (altura, diâmetro do colmo e número de folhas) e determinar as produções de massa seca da parte aérea e do sistema radicular, além da determinação dos teores de nutrientes. A omissão de N, P e K proporcionaram deficiências nutricionais características nas folhas do milho, quando cultivado em casa de vegetação. As modificações nas folhas do milho, com as doses dos nutrientes estudadas, possibilitaram a obtenção de imagens necessárias para o desenvolvimento do SVA, em casa de vegetação. A utilização das imagens da casa de vegetação para treinar o SVA visando à validação de imagens do campo, gerou confusão na interpretação, levando a erros de classificação, entretanto, o uso desta tecnologia para diagnose nutricional do milho, tanto em casa de vegetação, como no campo, é promissora.
id USP_184afb5c223a518633d3b0e2fa657705
oai_identifier_str oai:teses.usp.br:tde-10072013-085725
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milhoUse of the artificial vision for nutritional diagnosis of nitrogen, phosphorus, potassium and manganese in cornZea maysZea maysComputer visionMineral nutritionNutrição mineralSintomas de deficiênciasSymptoms of deficienciesVisão computacionalUm sistema de visão artificial (SVA) para diagnose nutricional de milho, baseado em análise de imagens de folhas foi recentemente proposto pelo GCC-IFSC e Agrárias-FZEA/USP. O objetivo do estudo foi avaliar o estado nutricional do milho cultivado em casa de vegetação em solução nutritiva, com deficiência e suficiência nutricionais induzidas de nitrogênio (N), fósforo (P), potássio (K) e manganês (Mn) utilizando visão artificial, e posteriormente em campo visando validar o diagnóstico pelo sistema de visão artificial desenvolvido. As doses dos nutrientes foram constituídas pela omissão, 1/5, 2/5 e a dose completa, combinadas em três estádios de desenvolvimento do milho (V4, V7 e R1), com quatro repetições. O experimento foi individual para cada elemento. Em cada época foram coletadas imagens de folhas indicativas do estádio (FI), folhas velhas (FV) para o N, P e K e folhas novas para o Mn, que foram primeiramente digitalizadas em 1200 dpi, e em seguida encaminhadas para serem analisadas quimicamente. Também foram avaliadas nas plantas, as variáveis biométricas (altura, diâmetro do colmo e número de folhas) e determinar as produções de massa seca da parte aérea e do sistema radicular, além da determinação dos teores de nutrientes. A omissão de N, P e K proporcionaram deficiências nutricionais características nas folhas do milho, quando cultivado em casa de vegetação. As modificações nas folhas do milho, com as doses dos nutrientes estudadas, possibilitaram a obtenção de imagens necessárias para o desenvolvimento do SVA, em casa de vegetação. A utilização das imagens da casa de vegetação para treinar o SVA visando à validação de imagens do campo, gerou confusão na interpretação, levando a erros de classificação, entretanto, o uso desta tecnologia para diagnose nutricional do milho, tanto em casa de vegetação, como no campo, é promissora.An artificial vision system (AVS) for nutrient diagnosis of corn, based on analysis of images of leaves was recently proposed by SCG-IFSC and Agrarian-FZEA/USP. The objective was evaluate the nutritional status of maize grown in a greenhouse in nutrient solution with induced nutritional deficiency and sufficiency of nitrogen (N), phosphorus (P), potassium (K) and manganese (Mn) using artificial vision, and correlate the results obtained with foliar analysis, and then the field in order to validate the diagnosis by artificial vision system developed. Doses of nutrients were established by omission, 1/5, 2/5 and full dose, combined into three developmental stages of corn (V4, V7 and R1), with four replications. The experiment was for each individual element. Images of leaves were collected in each epoch indicating the stage (FI), old leaves (FV) for N, P and K and Mn for new leaves, which were first scanned at 1200 dpi, then sent to be analyzed chemically. The biometric variables (height, stem diameter and number of leaves) were also evaluated, and the dry matter production of shoots and roots was determined, besides the determination of nutritional content. The omission of N, P and K caused typical nutrient deficiencies provided in the leaves of maize when grown in a greenhouse. The changes in the leaves of maize, with doses of nutrients studied, allowed the imaging necessary for training SVA in a greenhouse. The use of images of the greenhouse to train the SVA aiming to validate images of the field has led to confusion in the interpretation leading to errors of classification, however the use of this technology for nutrient diagnosis of corn, both in the greenhouse and in the field, is promising.Biblioteca Digitais de Teses e Dissertações da USPLuz, Pedro Henrique de CerqueiraRomualdo, Liliane Maria2013-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/74/74131/tde-10072013-085725/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-10072013-085725Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
Use of the artificial vision for nutritional diagnosis of nitrogen, phosphorus, potassium and manganese in corn
title Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
spellingShingle Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
Romualdo, Liliane Maria
Zea mays
Zea mays
Computer vision
Mineral nutrition
Nutrição mineral
Sintomas de deficiências
Symptoms of deficiencies
Visão computacional
title_short Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
title_full Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
title_fullStr Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
title_full_unstemmed Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
title_sort Utilização da visão artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho
author Romualdo, Liliane Maria
author_facet Romualdo, Liliane Maria
author_role author
dc.contributor.none.fl_str_mv Luz, Pedro Henrique de Cerqueira
dc.contributor.author.fl_str_mv Romualdo, Liliane Maria
dc.subject.por.fl_str_mv Zea mays
Zea mays
Computer vision
Mineral nutrition
Nutrição mineral
Sintomas de deficiências
Symptoms of deficiencies
Visão computacional
topic Zea mays
Zea mays
Computer vision
Mineral nutrition
Nutrição mineral
Sintomas de deficiências
Symptoms of deficiencies
Visão computacional
description Um sistema de visão artificial (SVA) para diagnose nutricional de milho, baseado em análise de imagens de folhas foi recentemente proposto pelo GCC-IFSC e Agrárias-FZEA/USP. O objetivo do estudo foi avaliar o estado nutricional do milho cultivado em casa de vegetação em solução nutritiva, com deficiência e suficiência nutricionais induzidas de nitrogênio (N), fósforo (P), potássio (K) e manganês (Mn) utilizando visão artificial, e posteriormente em campo visando validar o diagnóstico pelo sistema de visão artificial desenvolvido. As doses dos nutrientes foram constituídas pela omissão, 1/5, 2/5 e a dose completa, combinadas em três estádios de desenvolvimento do milho (V4, V7 e R1), com quatro repetições. O experimento foi individual para cada elemento. Em cada época foram coletadas imagens de folhas indicativas do estádio (FI), folhas velhas (FV) para o N, P e K e folhas novas para o Mn, que foram primeiramente digitalizadas em 1200 dpi, e em seguida encaminhadas para serem analisadas quimicamente. Também foram avaliadas nas plantas, as variáveis biométricas (altura, diâmetro do colmo e número de folhas) e determinar as produções de massa seca da parte aérea e do sistema radicular, além da determinação dos teores de nutrientes. A omissão de N, P e K proporcionaram deficiências nutricionais características nas folhas do milho, quando cultivado em casa de vegetação. As modificações nas folhas do milho, com as doses dos nutrientes estudadas, possibilitaram a obtenção de imagens necessárias para o desenvolvimento do SVA, em casa de vegetação. A utilização das imagens da casa de vegetação para treinar o SVA visando à validação de imagens do campo, gerou confusão na interpretação, levando a erros de classificação, entretanto, o uso desta tecnologia para diagnose nutricional do milho, tanto em casa de vegetação, como no campo, é promissora.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/74/74131/tde-10072013-085725/
url http://www.teses.usp.br/teses/disponiveis/74/74131/tde-10072013-085725/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319344604282880