As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29112010-093844/ |
Resumo: | Neste trabalho apresenta-se duas novas distribuições de probabilidade obtidas de dois métodos de generalização da distribuição log-logística com dois parâmetros (LL(?,?)). O primeiro método descrito em Marshall e Olkin (1997) transforma a nova distribuição, agora com três parâmetros e denominada distribuição log-logística modificada (LLM (v,?,?)), mais flexível porém, não muda a forma geral da função de taxa de falha e o novo parâmetro v, não influência no cálculo da assimetria e curtose. O segundo método utiliza a classe de distribuições Kumaraswamy proposta por Cordeiro e Castro (2010), para construir a nova distribuição de probabilidade, denominada distribuição Kumaraswamy log-logística (Kw-LL(a,b,?,?)), a qual considera dois novos parâmetros a e b obtendo ganho nas formas da função de taxa de falha, que agora além de modelar dados onde a função de taxa de falha tem forma decrescente e unimodal, modela forma crescente e forma de U. Também foi proposto as distribuições logística modificada (LM (v,µ,?)) e Kumaraswamy logística (Kw-L (a,b, µ,?)$) para a variável Y=log(T), em que T ~ LLM (v,?,?) no caso da distribuição logística modificada e T ~ Kw-LL(a,b,?,?) no caso da distribuição Kw-L. Com reparametrização ? = exp(µ) e ? = 1/?. Da mesma forma que a distribuição LLM, não há ganho quanto a forma da função de taxa de falha da distribuição logística modificada e o parâmetro v não contribuiu para o cálculo da assimetria e curtose desta distribuição. O modelo de regressão locação e escala foi proposto para ambas as distribuições. Por fim, utilizou-se dois conjuntos de dados, para exemplificar o ganho das novas distribuições Kw-LL e Kw-L em relação as distribuições log-logística e logística. O primeiro conjunto refere-se a dados de tempo até a soro-reversão de 143 crianças expostas ao HIV por via vertical, nascidas no Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto no período de 1995 a 2001, onde as mães não foram tratadas. O segundo conjunto de dados refere-se ao tempo até a falha de um tipo de isolante elétrico fluido submetivo a sete níveis de voltagem constante. |
id |
USP_18de2c65fe9c188d84e7c4b8dd2164c9 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-29112010-093844 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logísticaDistributions Kumaraswamy-log-logistic and Kumaraswamy-logisticAnálise de regressão e de correlaçãoAnálise de sobrevivênciaDistribuições (Probabilidade)Distributions (Probability)Logística.Logistics.Regression analysis and correlationSurvival analysisNeste trabalho apresenta-se duas novas distribuições de probabilidade obtidas de dois métodos de generalização da distribuição log-logística com dois parâmetros (LL(?,?)). O primeiro método descrito em Marshall e Olkin (1997) transforma a nova distribuição, agora com três parâmetros e denominada distribuição log-logística modificada (LLM (v,?,?)), mais flexível porém, não muda a forma geral da função de taxa de falha e o novo parâmetro v, não influência no cálculo da assimetria e curtose. O segundo método utiliza a classe de distribuições Kumaraswamy proposta por Cordeiro e Castro (2010), para construir a nova distribuição de probabilidade, denominada distribuição Kumaraswamy log-logística (Kw-LL(a,b,?,?)), a qual considera dois novos parâmetros a e b obtendo ganho nas formas da função de taxa de falha, que agora além de modelar dados onde a função de taxa de falha tem forma decrescente e unimodal, modela forma crescente e forma de U. Também foi proposto as distribuições logística modificada (LM (v,µ,?)) e Kumaraswamy logística (Kw-L (a,b, µ,?)$) para a variável Y=log(T), em que T ~ LLM (v,?,?) no caso da distribuição logística modificada e T ~ Kw-LL(a,b,?,?) no caso da distribuição Kw-L. Com reparametrização ? = exp(µ) e ? = 1/?. Da mesma forma que a distribuição LLM, não há ganho quanto a forma da função de taxa de falha da distribuição logística modificada e o parâmetro v não contribuiu para o cálculo da assimetria e curtose desta distribuição. O modelo de regressão locação e escala foi proposto para ambas as distribuições. Por fim, utilizou-se dois conjuntos de dados, para exemplificar o ganho das novas distribuições Kw-LL e Kw-L em relação as distribuições log-logística e logística. O primeiro conjunto refere-se a dados de tempo até a soro-reversão de 143 crianças expostas ao HIV por via vertical, nascidas no Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto no período de 1995 a 2001, onde as mães não foram tratadas. O segundo conjunto de dados refere-se ao tempo até a falha de um tipo de isolante elétrico fluido submetivo a sete níveis de voltagem constante.In this work, are presented two new probability distributions, obtained from two generalization methods of the log-logistic distribution, with two parameters (LL (?, ?)). The first method described in Marshall e Olkin (1997) turns the new distribution, now with three parameters, called modified log-logistic distribution (LLM(v, ?, ?)). This distribution is more flexible, but, does not change the general shape of the failure rate function, as well as the new parameter v, does not influence the calculus of skewness and kurtosis. The second method, uses the class of distributions Kumaraswamy proposed by Cordeiro and Castro (2010). To build the new probability distribution, called Kumaraswamy log-logistic distribution (Kw-LL(a,b,?,?)), which considers two new parameters a and b gaining in the forms of failure rate function, that now, even modeling data where the failure rate function has decreasing and unimodal shape, models the increasing form and the U-shaped. Also, were proposed the distributions modified logistic (LM (v,µ,?)) and Kumaraswamy logistics (Kw-L (a,b,µ,?)) for the variable Y=log(T), where T ~ LLM(v,?,?) in the case of the modified logistic distribution and T ~ Kw-LL (a,b,?,?) in the case of Kw-L distribution, with reparametrization ? =exp(µ) and ? = 1/?. As in the distribution LLM, there is no gain for the shape of the failure rate function of modified logistic distribution and the parameter v does not contribute to the calculation of skewness and kurtosis of the distribution. The location and scale regression models were proposed for both distributions. As illustration, were used two datasets to exemplify the gain of the new distributions Kw-LL and Kw-L compared with the log-logistic and logistic distributions. The first dataset refers to the data of time until soro-reversion of 143 children exposed to HIV through vertical, born in the Hospital of the Medical School of Ribeirão Preto during the period 1995 to 2001, where mothers were not treated. The second dataset refers to the time until the failure of a type of electrical insulating fluid subjected to seven constant voltage levelsBiblioteca Digitais de Teses e Dissertações da USPOrtega, Edwin Moises MarcosSantana, Tiago Viana Flor de2010-10-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-29112010-093844/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:26Zoai:teses.usp.br:tde-29112010-093844Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:26Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística Distributions Kumaraswamy-log-logistic and Kumaraswamy-logistic |
title |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística |
spellingShingle |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística Santana, Tiago Viana Flor de Análise de regressão e de correlação Análise de sobrevivência Distribuições (Probabilidade) Distributions (Probability) Logística. Logistics. Regression analysis and correlation Survival analysis |
title_short |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística |
title_full |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística |
title_fullStr |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística |
title_full_unstemmed |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística |
title_sort |
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística |
author |
Santana, Tiago Viana Flor de |
author_facet |
Santana, Tiago Viana Flor de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ortega, Edwin Moises Marcos |
dc.contributor.author.fl_str_mv |
Santana, Tiago Viana Flor de |
dc.subject.por.fl_str_mv |
Análise de regressão e de correlação Análise de sobrevivência Distribuições (Probabilidade) Distributions (Probability) Logística. Logistics. Regression analysis and correlation Survival analysis |
topic |
Análise de regressão e de correlação Análise de sobrevivência Distribuições (Probabilidade) Distributions (Probability) Logística. Logistics. Regression analysis and correlation Survival analysis |
description |
Neste trabalho apresenta-se duas novas distribuições de probabilidade obtidas de dois métodos de generalização da distribuição log-logística com dois parâmetros (LL(?,?)). O primeiro método descrito em Marshall e Olkin (1997) transforma a nova distribuição, agora com três parâmetros e denominada distribuição log-logística modificada (LLM (v,?,?)), mais flexível porém, não muda a forma geral da função de taxa de falha e o novo parâmetro v, não influência no cálculo da assimetria e curtose. O segundo método utiliza a classe de distribuições Kumaraswamy proposta por Cordeiro e Castro (2010), para construir a nova distribuição de probabilidade, denominada distribuição Kumaraswamy log-logística (Kw-LL(a,b,?,?)), a qual considera dois novos parâmetros a e b obtendo ganho nas formas da função de taxa de falha, que agora além de modelar dados onde a função de taxa de falha tem forma decrescente e unimodal, modela forma crescente e forma de U. Também foi proposto as distribuições logística modificada (LM (v,µ,?)) e Kumaraswamy logística (Kw-L (a,b, µ,?)$) para a variável Y=log(T), em que T ~ LLM (v,?,?) no caso da distribuição logística modificada e T ~ Kw-LL(a,b,?,?) no caso da distribuição Kw-L. Com reparametrização ? = exp(µ) e ? = 1/?. Da mesma forma que a distribuição LLM, não há ganho quanto a forma da função de taxa de falha da distribuição logística modificada e o parâmetro v não contribuiu para o cálculo da assimetria e curtose desta distribuição. O modelo de regressão locação e escala foi proposto para ambas as distribuições. Por fim, utilizou-se dois conjuntos de dados, para exemplificar o ganho das novas distribuições Kw-LL e Kw-L em relação as distribuições log-logística e logística. O primeiro conjunto refere-se a dados de tempo até a soro-reversão de 143 crianças expostas ao HIV por via vertical, nascidas no Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto no período de 1995 a 2001, onde as mães não foram tratadas. O segundo conjunto de dados refere-se ao tempo até a falha de um tipo de isolante elétrico fluido submetivo a sete níveis de voltagem constante. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29112010-093844/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29112010-093844/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257490273599488 |