Detecção e extração de redes vasculares usando transformada de Hough

Detalhes bibliográficos
Autor(a) principal: Macedo, Maysa Malfiza Garcia de
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-171139/
Resumo: Doenças vasculares são um problema mundial, que representa 28% das mortes no mundo e 66% do total de doenças que acometem os brasileiros. Dessa forma, há um grande interesse em pesquisar formas de prevenção e tratamento dessas doenças. Algumas medidas são relevantes no auxílio de diagnóstico, tal como: tamanho médio dos ramos, diâmetro médio das seções transversais dos vasos e padrões de divisão de ramos. Calcular essas medidas de forma manual é uma tarefa demorada e trabalhosa. Assim, esta Tese tem como objetivo, propor um método computacional de rastreamento e extração de atributos em redes vasculares a partir de imagens 3D de angiografia por ressonância magnética e por tomografia computadorizada. Trata-se de uma abordagem de rastreamento e identificação de bifurcações que difere das técnicas anteriores, utilizando a Transformada de Hough para identificar o diâmetro do vaso em cortes transversais num dado ponto ao longo de um vaso sanguíneo. Mais detalhadamente, essa abordagem utiliza um campo vetorial advindo do cálculo de uma matriz formada por derivadas parciais de segunda ordem, obtida da intensidade luminosa da imagem, para identificar a direção de um ramo de vaso. Além disso, durante o processo de rastreamento de um ramo de vaso, são calculados vários descritores de forma com o objetivo de classificar regiões como pertencentes a uma bifurcação ou não. Em adição a estes descritores, desenvolvemos uma nova medida chamada de variância do raio que permite distinguir, bifurcações, não-bifurcações e segmentos de vaso com stents (aparelho metálico usado para aumentar o diâmetro dos vasos). Para a classificação de bifurcações, criamos a medida de bifurcação, que trata-se de uma combinação linear de todos os descritores de forma apresentados neste trabalho. Testes foram realizados para atestar a eficácia da abordagem proposta, utilizando tanto imagens sintéticas quantoimagens reais. Os resultados mostraram que o método é capaz de rastrear 91% de uma rede vascular sintética variando o ponto de inicialização e 76% variando o nível de ruído. Também foi observado por meio de testes que o método proposto consegue rastrear vasos e identificar bifurcações em imagens reais sem avaliação numérica. Essa abordagem permite a extração da relação hierárquica entre os ramos em uma rede vascular e a extração do padrão de divisão dos vasos, o que contribui sobremaneira para o estudo do comportamento do fenômeno da angiogênese e no auxílio no diagnóstico de anomalias vasculares.
id USP_1957c4b2fbe20e34a32c0845ca84bdab
oai_identifier_str oai:teses.usp.br:tde-26112012-171139
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Detecção e extração de redes vasculares usando transformada de HoughDetection and Extraction of Vascular Networks using Hough Transform3D angiographic imagesblood vessels segmentationextração de redes vascularesHough transformimagens angiográficas 3Dsegmentação de vasos sanguíneostransformada de Houghvascular networks extractionDoenças vasculares são um problema mundial, que representa 28% das mortes no mundo e 66% do total de doenças que acometem os brasileiros. Dessa forma, há um grande interesse em pesquisar formas de prevenção e tratamento dessas doenças. Algumas medidas são relevantes no auxílio de diagnóstico, tal como: tamanho médio dos ramos, diâmetro médio das seções transversais dos vasos e padrões de divisão de ramos. Calcular essas medidas de forma manual é uma tarefa demorada e trabalhosa. Assim, esta Tese tem como objetivo, propor um método computacional de rastreamento e extração de atributos em redes vasculares a partir de imagens 3D de angiografia por ressonância magnética e por tomografia computadorizada. Trata-se de uma abordagem de rastreamento e identificação de bifurcações que difere das técnicas anteriores, utilizando a Transformada de Hough para identificar o diâmetro do vaso em cortes transversais num dado ponto ao longo de um vaso sanguíneo. Mais detalhadamente, essa abordagem utiliza um campo vetorial advindo do cálculo de uma matriz formada por derivadas parciais de segunda ordem, obtida da intensidade luminosa da imagem, para identificar a direção de um ramo de vaso. Além disso, durante o processo de rastreamento de um ramo de vaso, são calculados vários descritores de forma com o objetivo de classificar regiões como pertencentes a uma bifurcação ou não. Em adição a estes descritores, desenvolvemos uma nova medida chamada de variância do raio que permite distinguir, bifurcações, não-bifurcações e segmentos de vaso com stents (aparelho metálico usado para aumentar o diâmetro dos vasos). Para a classificação de bifurcações, criamos a medida de bifurcação, que trata-se de uma combinação linear de todos os descritores de forma apresentados neste trabalho. Testes foram realizados para atestar a eficácia da abordagem proposta, utilizando tanto imagens sintéticas quantoimagens reais. Os resultados mostraram que o método é capaz de rastrear 91% de uma rede vascular sintética variando o ponto de inicialização e 76% variando o nível de ruído. Também foi observado por meio de testes que o método proposto consegue rastrear vasos e identificar bifurcações em imagens reais sem avaliação numérica. Essa abordagem permite a extração da relação hierárquica entre os ramos em uma rede vascular e a extração do padrão de divisão dos vasos, o que contribui sobremaneira para o estudo do comportamento do fenômeno da angiogênese e no auxílio no diagnóstico de anomalias vasculares.Vascular diseases are a main health problem, representing 28% of deaths worldwide and 66% of all diseases affecting the Brazilian population. Thus, it is important that researches in prevention and treatment of this type of disease increase. Moreover, there are several demands, such as computational tools capable of analyzing and extracting attributes from non-invasive images. The scope of this work is the analysis and extraction of data from magnetic resonance angiography and computed tomography angiography images by highlighting blood vessels. In this context, this thesis aims the development of a novel computational tracking and feature extraction method for vascular networks from 3D images. Our approach presents the following steps: First, identify the vessel cross-sections along it using the Hough transform. Then, compute a matrix composed of second order partial derivatives of image intensity to identify the direction of the vessel. Perform a feature analysis of the vessel contour to classify the bifurcation point, and finally, identify the direction of the new branch in a bifurcation point. The main contribution of this Thesis is the two new measures developed, called radius ratio and bifurcation measure, the radius ratio is capable to distinguish between a region with bifurcation, stents or without both of them. The bifurcation measure is a linear combination that allows to classify a region as bifurcation or not. Tests were performed in order to verify the proposed approach effectiveness, using both synthetic images and real images. The results showed the method is capable to track 91% of synthetic vascular networks varying the seed point and 76% varying the level of noise. Also, we performed tests in real images and by visual evaluation, we could observed that the proposed method was able to track vessels and identify bifurcations from different parts of the body. This approach allows to calculate, in the future, the density of bifurcations in a vascular network, the distance between them, the stenosis and aneurysms grading and characterize specific vessels. In addition, the vascular networks extraction allows the study of the angiogenesis phenomena and vascular anomalies.Biblioteca Digitais de Teses e Dissertações da USPJackowski, Marcel ParolinMacedo, Maysa Malfiza Garcia de2012-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-171139/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:32Zoai:teses.usp.br:tde-26112012-171139Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção e extração de redes vasculares usando transformada de Hough
Detection and Extraction of Vascular Networks using Hough Transform
title Detecção e extração de redes vasculares usando transformada de Hough
spellingShingle Detecção e extração de redes vasculares usando transformada de Hough
Macedo, Maysa Malfiza Garcia de
3D angiographic images
blood vessels segmentation
extração de redes vasculares
Hough transform
imagens angiográficas 3D
segmentação de vasos sanguíneos
transformada de Hough
vascular networks extraction
title_short Detecção e extração de redes vasculares usando transformada de Hough
title_full Detecção e extração de redes vasculares usando transformada de Hough
title_fullStr Detecção e extração de redes vasculares usando transformada de Hough
title_full_unstemmed Detecção e extração de redes vasculares usando transformada de Hough
title_sort Detecção e extração de redes vasculares usando transformada de Hough
author Macedo, Maysa Malfiza Garcia de
author_facet Macedo, Maysa Malfiza Garcia de
author_role author
dc.contributor.none.fl_str_mv Jackowski, Marcel Parolin
dc.contributor.author.fl_str_mv Macedo, Maysa Malfiza Garcia de
dc.subject.por.fl_str_mv 3D angiographic images
blood vessels segmentation
extração de redes vasculares
Hough transform
imagens angiográficas 3D
segmentação de vasos sanguíneos
transformada de Hough
vascular networks extraction
topic 3D angiographic images
blood vessels segmentation
extração de redes vasculares
Hough transform
imagens angiográficas 3D
segmentação de vasos sanguíneos
transformada de Hough
vascular networks extraction
description Doenças vasculares são um problema mundial, que representa 28% das mortes no mundo e 66% do total de doenças que acometem os brasileiros. Dessa forma, há um grande interesse em pesquisar formas de prevenção e tratamento dessas doenças. Algumas medidas são relevantes no auxílio de diagnóstico, tal como: tamanho médio dos ramos, diâmetro médio das seções transversais dos vasos e padrões de divisão de ramos. Calcular essas medidas de forma manual é uma tarefa demorada e trabalhosa. Assim, esta Tese tem como objetivo, propor um método computacional de rastreamento e extração de atributos em redes vasculares a partir de imagens 3D de angiografia por ressonância magnética e por tomografia computadorizada. Trata-se de uma abordagem de rastreamento e identificação de bifurcações que difere das técnicas anteriores, utilizando a Transformada de Hough para identificar o diâmetro do vaso em cortes transversais num dado ponto ao longo de um vaso sanguíneo. Mais detalhadamente, essa abordagem utiliza um campo vetorial advindo do cálculo de uma matriz formada por derivadas parciais de segunda ordem, obtida da intensidade luminosa da imagem, para identificar a direção de um ramo de vaso. Além disso, durante o processo de rastreamento de um ramo de vaso, são calculados vários descritores de forma com o objetivo de classificar regiões como pertencentes a uma bifurcação ou não. Em adição a estes descritores, desenvolvemos uma nova medida chamada de variância do raio que permite distinguir, bifurcações, não-bifurcações e segmentos de vaso com stents (aparelho metálico usado para aumentar o diâmetro dos vasos). Para a classificação de bifurcações, criamos a medida de bifurcação, que trata-se de uma combinação linear de todos os descritores de forma apresentados neste trabalho. Testes foram realizados para atestar a eficácia da abordagem proposta, utilizando tanto imagens sintéticas quantoimagens reais. Os resultados mostraram que o método é capaz de rastrear 91% de uma rede vascular sintética variando o ponto de inicialização e 76% variando o nível de ruído. Também foi observado por meio de testes que o método proposto consegue rastrear vasos e identificar bifurcações em imagens reais sem avaliação numérica. Essa abordagem permite a extração da relação hierárquica entre os ramos em uma rede vascular e a extração do padrão de divisão dos vasos, o que contribui sobremaneira para o estudo do comportamento do fenômeno da angiogênese e no auxílio no diagnóstico de anomalias vasculares.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-171139/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-171139/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319065734447104