Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/25/25147/tde-16122021-110253/ |
Resumo: | Besides of the desired effects, the chemical solutions used to assist the endodontic instruments in the cleanliness and disinfection of the root canal system can also cause changes in the physicochemical properties of dentin, and consequently affect the adhesion of endodontic sealers and microorganisms to the root canal walls. However, the effects of new irrigators and irrigation protocols remain unknown. The objectives of this thesis were to verify the alterations in the properties of some irrigants when used combined in mixtures, to define the time necessary for the smear layer removal by a new irrigant, to determine the organic matter dissolution capacity and the effects in the physicochemical properties of dentin of some irrigation solutions and protocols, and to evaluate the adhesion of microorganisms and AH Plus sealer to dentin after its submission to different irrigation sequences. In all experiments with dentin, the samples used were obtained from bovine teeth. In the analysis performed in this thesis, the following solutions were tested isolated and combined in different irrigation protocols: saline solution (control), sodium hypochlorite (NaOCl), trisodium (EDTAHNa3), alkaline ethylenediaminetetraacetic acid tetrasodium (EDTANa4), chlorhexidine (CHX), peracetic acid (PAA), and etidronic acid (HEDP). The EDTAHNa3 and EDTANa4 were tested in relation to their effects on the free chlorine content of NaOCl. The solutions were mixed in a 1:1 ratio and the iodometric titration of the mixtures performed in different time intervals. The time necessary for smear layer removal from dentin samples by solutions of EDTAHNa3 and different concentrations of EDTANa4 isolated and mixed with NaOCl was determined with the aid of the scanning electron microscope (SEM). The capacity of NaOCl to dissolve organic matter was determined by weighting fragments of bovine muscle before and after immersion in solutions of 1%, 2.5%, and 5% of NaOCl in different periods of time. Also, the effects of EDTAHNa3, EDTANa4 and HEDP on the organic matter dissolution by NaOCl were evaluated. The alterations produced by all solutions isolated and some irrigation protocols in the organic and inorganic components of the dentin surface were analysed by the attenuated total reflectance of Fourier transform infrared spectroscopy (ATR-FTIR) technique. Absorbance spectra were collected from the dentin surface before and after immersion of samples in the irrigants and the ratios of the amide III/phosphate and carbonate/phosphate bands were calculated. To quantify the adhesion of CHX to mineralized dentin and to dentin demineralized by different irrigation protocols, the areas of the band associated with CHX with the peak in 1492 cm1 were determined in spectra obtained by ATR-FTIR. The effects of different irrigation protocols in the roughness and wettability of dentin surface were measured with a benchtop roughness tester and the sessile drop technique, respectively. For the assays of microorganisms adhesion, samples were prepared and treated the same way and with the same irrigation protocols used in the roughness and wettability tests. Following, Candida albicans and Enterococcus faecalis were maintained in contact with the dentin for 2 hours and the samples were analyzed on the confocal laser scanning microscope (CLSM). Tests of push-out were performed to determine the impact of different irrigation protocols on the dentin bonding strength of AH Plus sealer over time. Canals of bovine incisors teeth were instrumented, irrigated and following obturated using only the sealer AH Plus. Half of the samples were submitted to pushout assessment 7 days after the obturation and the other half 20 months later. The results of the experiments showed that the EDTAHNa3 caused an almost complete and immediate loss of free available chlorine from NaOCl, whilst EDTANa4 promoted a slow and concentration-dependent decline. The smear layer was removed only by decalcifying solutions and in about 1 min by the 17% EDTAHNa3 and 5 min by the EDTANa4, both isolated or mixed with NaOCl. The increase in NaOCl concentration and contact time with the samples intensified the dissolution of organic matter. The mixtures of NaOCl with EDTANa4 and HEDP were able to dissolve the fragments of bovine muscle over-time, however, the EDTAHNa3 strongly affected the NaOCl dissolution capacity when they were mixed. The results of ATR-FTIR experiments showed that the increase in the NaOCl concentration intensified the deproteination of the dentin collagen with a reduction in the amide III/phosphate ratio. For the same decalcifying agent, the higher the concentration and immersion time the greater the removal of phosphate, exposure of the collagen matrix and consequently the increases in amide III/phosphate ratio. The PAA caused greater increases in amide III/phosphate ratio, followed by EDTAHNa3, EDTANa4 and HEDP and this order was maintained in the protocols in which NaOCl was used before the decalcifying agents. NaOCl required approximately 0.5 min to deproteinate the collagen matrix exposed after phosphate removal by EDTAHNa3 and PAA. The carbonate/phosphate ratio decreased after 30 s of samples immersion in solutions of NaOCl at 1%, 2.5% and 5% with no more alterations over time. The carbonate of the dentine was removed faster than phosphate by all decalcifying agents employed alone and in the irrigation protocols in which the use of the NaOCl was followed by the use of the EDTAHNa3, PAA and HEDP. For irrigation protocols that associate NaOCl with chelating solutions, the last irrigant used defined the final dentine amide III/phosphate and carbonate/phosphate ratios. For the ATR-FTIR analysis of CHX adhesion, the results showed that the adsorption of this irrigant to the dentin was potentiated when chelating agents were used prior to the CHX. In relation to the experiments of surface roughness, the saline solution, NaOCl, HEDP and CHX did not alter the roughness of the dentin, but EDTAHNa3 and PAA increased it. The wettability of the surface increased after the use of all irrigants, being the HEDP to cause the greater increases. In the assays of microorganisms adhesion, the smear layer and collagen exposed by the chelating agents favored the adhesion of E. faecalis. The C. albicans adhesion was major in surfaces with smear layer and more mineral. The use of CHX as the final irrigant reduced the adhesion of both microorganisms. The wettability did not influence the microorganisms adhesion, while increases in roughness seems to potentiate the adherence of E. faecalis. The experiments of bond strength of AH Plus to the dentin showed that the irrigation with NaOCl and mixture of NaOCl + EDTANa4 produced the lowest push-out bond strength values in 7 days compared to NaOCl + EDTAHNa3, NaOCl + EDTAHNa3 + NaOCl, NaOCl + EDTAHNa3 + CHX and the mixture of NaOCl + HEDP. After 20 months the lowest values were obtained in the groups irrigated with NaOCl and NaOCl + EDTAHNa3. The groups of NaOCl + EDTAHNa3 + NaOCl, mixture NaOCl + HEDP, and mixture NaOCl + EDTANa4 presented values of push-out bond strength in 20 months similar to the values in 7 days. It was possible to conclude that the irrigation solutions tested in this study have different effects in the organic and inorganic matter and some of them can affect the action of each other when mixed. Independent of being used isolated or combined in irrigation protocols, these irrigants cause modifications in the dentin physicochemical properties that influence the adhesion of AH Plus sealer in short and long term and the microorganisms adherence to thesurface in cases of recontaminations. |
id |
USP_19c9269328b441baf49729a039019537 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16122021-110253 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealerEfeitos de diferentes regimes de irrigação nas propriedades físicoquímicas da dentina e consequências das alterações na adesão de microrganismos e do cimento endodôntico AH PlusCandida albicansCandida albicansCimentos de resinaDentinDentinaEnterococcus faecalisEnterococcus faecalisIrrigantes do canal radicularPropriedades de superfícieResin cementsRoot canal irrigantsSurface propertiesBesides of the desired effects, the chemical solutions used to assist the endodontic instruments in the cleanliness and disinfection of the root canal system can also cause changes in the physicochemical properties of dentin, and consequently affect the adhesion of endodontic sealers and microorganisms to the root canal walls. However, the effects of new irrigators and irrigation protocols remain unknown. The objectives of this thesis were to verify the alterations in the properties of some irrigants when used combined in mixtures, to define the time necessary for the smear layer removal by a new irrigant, to determine the organic matter dissolution capacity and the effects in the physicochemical properties of dentin of some irrigation solutions and protocols, and to evaluate the adhesion of microorganisms and AH Plus sealer to dentin after its submission to different irrigation sequences. In all experiments with dentin, the samples used were obtained from bovine teeth. In the analysis performed in this thesis, the following solutions were tested isolated and combined in different irrigation protocols: saline solution (control), sodium hypochlorite (NaOCl), trisodium (EDTAHNa3), alkaline ethylenediaminetetraacetic acid tetrasodium (EDTANa4), chlorhexidine (CHX), peracetic acid (PAA), and etidronic acid (HEDP). The EDTAHNa3 and EDTANa4 were tested in relation to their effects on the free chlorine content of NaOCl. The solutions were mixed in a 1:1 ratio and the iodometric titration of the mixtures performed in different time intervals. The time necessary for smear layer removal from dentin samples by solutions of EDTAHNa3 and different concentrations of EDTANa4 isolated and mixed with NaOCl was determined with the aid of the scanning electron microscope (SEM). The capacity of NaOCl to dissolve organic matter was determined by weighting fragments of bovine muscle before and after immersion in solutions of 1%, 2.5%, and 5% of NaOCl in different periods of time. Also, the effects of EDTAHNa3, EDTANa4 and HEDP on the organic matter dissolution by NaOCl were evaluated. The alterations produced by all solutions isolated and some irrigation protocols in the organic and inorganic components of the dentin surface were analysed by the attenuated total reflectance of Fourier transform infrared spectroscopy (ATR-FTIR) technique. Absorbance spectra were collected from the dentin surface before and after immersion of samples in the irrigants and the ratios of the amide III/phosphate and carbonate/phosphate bands were calculated. To quantify the adhesion of CHX to mineralized dentin and to dentin demineralized by different irrigation protocols, the areas of the band associated with CHX with the peak in 1492 cm1 were determined in spectra obtained by ATR-FTIR. The effects of different irrigation protocols in the roughness and wettability of dentin surface were measured with a benchtop roughness tester and the sessile drop technique, respectively. For the assays of microorganisms adhesion, samples were prepared and treated the same way and with the same irrigation protocols used in the roughness and wettability tests. Following, Candida albicans and Enterococcus faecalis were maintained in contact with the dentin for 2 hours and the samples were analyzed on the confocal laser scanning microscope (CLSM). Tests of push-out were performed to determine the impact of different irrigation protocols on the dentin bonding strength of AH Plus sealer over time. Canals of bovine incisors teeth were instrumented, irrigated and following obturated using only the sealer AH Plus. Half of the samples were submitted to pushout assessment 7 days after the obturation and the other half 20 months later. The results of the experiments showed that the EDTAHNa3 caused an almost complete and immediate loss of free available chlorine from NaOCl, whilst EDTANa4 promoted a slow and concentration-dependent decline. The smear layer was removed only by decalcifying solutions and in about 1 min by the 17% EDTAHNa3 and 5 min by the EDTANa4, both isolated or mixed with NaOCl. The increase in NaOCl concentration and contact time with the samples intensified the dissolution of organic matter. The mixtures of NaOCl with EDTANa4 and HEDP were able to dissolve the fragments of bovine muscle over-time, however, the EDTAHNa3 strongly affected the NaOCl dissolution capacity when they were mixed. The results of ATR-FTIR experiments showed that the increase in the NaOCl concentration intensified the deproteination of the dentin collagen with a reduction in the amide III/phosphate ratio. For the same decalcifying agent, the higher the concentration and immersion time the greater the removal of phosphate, exposure of the collagen matrix and consequently the increases in amide III/phosphate ratio. The PAA caused greater increases in amide III/phosphate ratio, followed by EDTAHNa3, EDTANa4 and HEDP and this order was maintained in the protocols in which NaOCl was used before the decalcifying agents. NaOCl required approximately 0.5 min to deproteinate the collagen matrix exposed after phosphate removal by EDTAHNa3 and PAA. The carbonate/phosphate ratio decreased after 30 s of samples immersion in solutions of NaOCl at 1%, 2.5% and 5% with no more alterations over time. The carbonate of the dentine was removed faster than phosphate by all decalcifying agents employed alone and in the irrigation protocols in which the use of the NaOCl was followed by the use of the EDTAHNa3, PAA and HEDP. For irrigation protocols that associate NaOCl with chelating solutions, the last irrigant used defined the final dentine amide III/phosphate and carbonate/phosphate ratios. For the ATR-FTIR analysis of CHX adhesion, the results showed that the adsorption of this irrigant to the dentin was potentiated when chelating agents were used prior to the CHX. In relation to the experiments of surface roughness, the saline solution, NaOCl, HEDP and CHX did not alter the roughness of the dentin, but EDTAHNa3 and PAA increased it. The wettability of the surface increased after the use of all irrigants, being the HEDP to cause the greater increases. In the assays of microorganisms adhesion, the smear layer and collagen exposed by the chelating agents favored the adhesion of E. faecalis. The C. albicans adhesion was major in surfaces with smear layer and more mineral. The use of CHX as the final irrigant reduced the adhesion of both microorganisms. The wettability did not influence the microorganisms adhesion, while increases in roughness seems to potentiate the adherence of E. faecalis. The experiments of bond strength of AH Plus to the dentin showed that the irrigation with NaOCl and mixture of NaOCl + EDTANa4 produced the lowest push-out bond strength values in 7 days compared to NaOCl + EDTAHNa3, NaOCl + EDTAHNa3 + NaOCl, NaOCl + EDTAHNa3 + CHX and the mixture of NaOCl + HEDP. After 20 months the lowest values were obtained in the groups irrigated with NaOCl and NaOCl + EDTAHNa3. The groups of NaOCl + EDTAHNa3 + NaOCl, mixture NaOCl + HEDP, and mixture NaOCl + EDTANa4 presented values of push-out bond strength in 20 months similar to the values in 7 days. It was possible to conclude that the irrigation solutions tested in this study have different effects in the organic and inorganic matter and some of them can affect the action of each other when mixed. Independent of being used isolated or combined in irrigation protocols, these irrigants cause modifications in the dentin physicochemical properties that influence the adhesion of AH Plus sealer in short and long term and the microorganisms adherence to thesurface in cases of recontaminations.Além dos efeitos desejados, as soluções químicas utilizadas para auxiliar os instrumentos endodônticos na limpeza e desinfecção do sistema radiculares podem causar alterações nas propriedades físico-químicas da dentina e consequentemente afetar a adesão de cimentos endodônticos e microrganismos às paredes do canal radicular. Contudo, os efeitos de novos irrigantes e protocolos de irrigação ainda são desconhecidos. Os objetivos desta tese foram verificar as alterações nas propriedades de alguns irrigantes quando utilizados combinados em misturas, definir o tempo necessário para a remoção da camada de smear layer por um novo irrigante, determinar a capacidade de dissolução de matéria orgânica e os efeitos de algumas soluções e protocolos de irrigação nas propriedades físico-químicas de dentina e avaliar a adesão de microrganismos e cimento AH Plus à dentina após a submissão desta a diferentes sequências de irrigação. Em todos os experimentos com dentina as amostras utilizadas foram obtidas a partir de dentes bovinos. Nas análise realizadas nesta tese as seguintes soluções foram testadas isoladas e combinadas em diferentes protocolos de irrigação: solução salina (controle), hipoclorito de sódio (NaOCl), ácido etilenodiaminotetraacético trisódico (EDTAHNa3), ácido etilenodiaminotetracético tetrassódico alcalino (EDTANa4), clorexidina (CHX), ácido peracético (PAA) e ácido etidrônico (HEDP). O EDTAHNa3 e o EDTANa4 foram testados em relação aos seus efeitos sobre o teor de cloro livre do NaOCl. As soluções foram misturadas em uma proporção de 1:1 e a titulação iodométrica das misturas realizada em diferentes intervalos de tempo. O tempo necessário para a remoção da smear layer de amostras de dentina pela solução de EDTAHNa3 a 17% e diferentes concentrações de EDTANa4 isoladas e misturadas com NaOCl foi determinado com o auxílio do microscópio eletrônico de varredura (SEM). A capacidade de dissolução de matéria orgânica pelo NaOCl foi determinada pesando fragmentos de músculo bovino antes e depois da imersão em soluções de 1%, 2,5% e 5% de NaOCl em diferentes períodos de tempo. Além disso, os efeitos do EDTAHNa3, EDTANa4 e HEDP na dissolução de matéria orgânica pelo NaOCl foram avaliados. As alterações produzidas por todas as soluções isoladas e alguns protocolos de irrigação nos componentes orgânicos e inorgânicos da superfície da dentina foram analisadas pela técnica de reflexão total atenuada em espectroscopia no infravermelho por transformação de Fourier (ATRFTIR). Espectros de absorbância foram coletados da superfície da dentina antes e após a imersão das amostras nos irrigantes, e foram calculadas as razões das bandas de amida III/fosfato e carbonato/fosfato. Para quantificar a adesão da CHX à dentina mineralizada e à dentina desmineralizada por diferentes protocolos de irrigação, foram determinadas as áreas da banda associada a CHX com pico em 1492 cm1 em espectros obtidos por ATR-FTIR. Os efeitos de diferentes protocolos de irrigação na rugosidade e molhabilidade da superfície da dentina foram medidos com um rugosímetro de bancada e a técnica de gota séssil, respectivamente. Para os ensaios de adesão de microrganismos, amostras foram preparadas e tratadas da mesma maneira e com os mesmos protocolos de irrigação utilizados nos testes de rugosidade e molhabilidade. Em seguida, Candida albicans e Enterococcus faecalis foram mantidos em contato com a dentina por 2 horas e as amostras foram analisadas no microscópio confocal de varredura laser (CLSM). Testes de push-out foram realizados para determinar o impacto de diferentes protocolos de irrigação na resistência de união à dentina do cimento AH Plus ao longo do tempo. Canais de dentes incisivos de bovinos foram instrumentados, irrigados e em seguida obturados utilizando apenas o cimento AH Plus. Metade das amostras foi submetida a avaliação de push-out 7 dias após a obturação e a outra metade após 20 meses. Os resultados dos experimentos mostraram que o EDTAHNa3 causou uma perda quase completa e imediata do cloro livre do NaOCl, enquanto o EDTANa4 promoveu um declínio lento e concentração dependente. A smear layer foi removida apenas por soluções descalcificantes e em cerca de 1 min pelo EDTAHNa3 a 17% e em 5 min pelo EDTANa4, tanto isolados ou misturados com o NaOCl. O aumento da concentração de NaOCl e do tempo de contato com os fragmentos de músculo bovino intensificou a dissolução da matéria orgânica. As misturas de NaOCl com EDTANa4 e HEDP foram capazes de dissolver as amostras de músculo ao longo do tempo, no entanto, o EDTAHNa3 afetou fortemente a capacidade de dissolução do NaOCl quando eles foram misturados. Os resultados dos experimentos com ATR-FTIR mostraram que o aumento da concentração do NaOCl intensificou a desproteinização do colágeno da dentina com redução da relação amida III/fosfato. Para o mesmo agente de descalcificação, quanto maior a concentração e o tempo de imersão, maior a remoção de fosfato, exposição da matriz de colágeno e consequentemente o aumento da proporção amida III/fosfato. O PAA causou os maiores aumentos na relação amida III/fosfato, seguido de EDTAHNa3, EDTANa4 e HEDP e esta ordem foi mantida nos protocolos em que o NaOCl foi usado antes dos agentes descalcificantes. O NaOCl necessitou aproximadamente 0,5 min para desproteinizar a matriz de colágeno exposta após a remoção de fosfato pelo EDTAHNa3 e o PAA. A relação carbonato/fosfato diminuiu após 30 s de imersão das amostras em soluções de NaOCl a 1%, 2,5% e 5%, sem mais alterações ao longo do tempo. O carbonato da dentina foi removido mais rápido do que o fosfato por todos os agentes descalcificantes empregados sozinhos e nos protocolos de irrigação em que o uso do NaOCl foi seguido pelo uso do EDTAHNa3, PAA e HEDP. Para os protocolos de irrigação que associam o NaOCl com soluções quelantes, o último irrigante utilizado definiu as proporções finais de amida II/fosfato e carbonato/fosfato da dentina. Para as análises da adesão da CHX em ATR-FTIR, os resultados mostraram que a adsorção deste irrigante à dentina foi potencializada quando agentes quelantes foram utilizados antes da CHX. Em relação aos experimentos de rugosidade da superfície, a solução salina, o NaOCl, o HEDP e a CHX não alteraram a rugosidade da dentina, mas o EDTAHNa3 e o PAA a aumentaram. A molhabilidade da superfície aumentou após o uso de todos os irrigantes, sendo que o HEDP causou os maiores aumentos. Nos ensaios de adesão dos microrganismos, a smear layer e o colágeno exposto pelos agentes quelantes favoreceram a adesão de E. faecalis. A adesão da C. albicans foi maior em superfícies com smear layer ou mais mineral. O uso de CHX como irrigante final reduziu a adesão de ambos os microrganismos. A molhabilidade não influenciou a adesão dos microrganismos, enquanto o aumento da rugosidade parece potencializar a adesão do E. faecalis. Os experimentos de resistência de união do AH Plus à dentina mostraram que a irrigação com NaOCl e a mistura de NaOCl + EDTANa4 produziram valores de resistência de união em 7 dias mais baixos em comparação com NaOCl + EDTAHNa3, NaOCl + EDTAHNa3 + NaOCl, NaOCl + EDTAHNa3 + CHX e a mistura de NaOCl + HEDP. Após 20 meses, os valores mais baixos foram obtidos nos grupos irrigados com NaOCl e NaOCl + EDTAHNa3. Os grupos de NaOCl + EDTAHNa3 + NaOCl, mistura de NaOCl + HEDP e mistura de NaOCl + EDTANa4 apresentaram valores de força de união por push-out em 20 meses semelhante aos valores em 7 dias. Foi possível concluir que as soluções de irrigação testadas neste estudo têm diferentes efeitos na matéria orgânica e inorgânica e elas podem afetar as ações umas das outras quando misturadas. Independentemente de serem utilizadas isoladas ou combinadas em protocolos de irrigação, os irrigantes causam modificações nas propriedades físico-químicas dentinárias que influenciam na adesão do cimento AH Plus a curto e longo prazo e na adesão de microrganismos à superfície em casos de recontaminação.Biblioteca Digitais de Teses e Dissertações da USPBramante, Clovis MonteiroTartari, Talita2017-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/25/25147/tde-16122021-110253/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-12-16T13:03:02Zoai:teses.usp.br:tde-16122021-110253Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-12-16T13:03:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer Efeitos de diferentes regimes de irrigação nas propriedades físicoquímicas da dentina e consequências das alterações na adesão de microrganismos e do cimento endodôntico AH Plus |
title |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer |
spellingShingle |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer Tartari, Talita Candida albicans Candida albicans Cimentos de resina Dentin Dentina Enterococcus faecalis Enterococcus faecalis Irrigantes do canal radicular Propriedades de superfície Resin cements Root canal irrigants Surface properties |
title_short |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer |
title_full |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer |
title_fullStr |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer |
title_full_unstemmed |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer |
title_sort |
Effects of different irrigation regimes in physico-chemical properties of dentin and consequences of changes in the adhesion of microorganisms and AH Plus sealer |
author |
Tartari, Talita |
author_facet |
Tartari, Talita |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bramante, Clovis Monteiro |
dc.contributor.author.fl_str_mv |
Tartari, Talita |
dc.subject.por.fl_str_mv |
Candida albicans Candida albicans Cimentos de resina Dentin Dentina Enterococcus faecalis Enterococcus faecalis Irrigantes do canal radicular Propriedades de superfície Resin cements Root canal irrigants Surface properties |
topic |
Candida albicans Candida albicans Cimentos de resina Dentin Dentina Enterococcus faecalis Enterococcus faecalis Irrigantes do canal radicular Propriedades de superfície Resin cements Root canal irrigants Surface properties |
description |
Besides of the desired effects, the chemical solutions used to assist the endodontic instruments in the cleanliness and disinfection of the root canal system can also cause changes in the physicochemical properties of dentin, and consequently affect the adhesion of endodontic sealers and microorganisms to the root canal walls. However, the effects of new irrigators and irrigation protocols remain unknown. The objectives of this thesis were to verify the alterations in the properties of some irrigants when used combined in mixtures, to define the time necessary for the smear layer removal by a new irrigant, to determine the organic matter dissolution capacity and the effects in the physicochemical properties of dentin of some irrigation solutions and protocols, and to evaluate the adhesion of microorganisms and AH Plus sealer to dentin after its submission to different irrigation sequences. In all experiments with dentin, the samples used were obtained from bovine teeth. In the analysis performed in this thesis, the following solutions were tested isolated and combined in different irrigation protocols: saline solution (control), sodium hypochlorite (NaOCl), trisodium (EDTAHNa3), alkaline ethylenediaminetetraacetic acid tetrasodium (EDTANa4), chlorhexidine (CHX), peracetic acid (PAA), and etidronic acid (HEDP). The EDTAHNa3 and EDTANa4 were tested in relation to their effects on the free chlorine content of NaOCl. The solutions were mixed in a 1:1 ratio and the iodometric titration of the mixtures performed in different time intervals. The time necessary for smear layer removal from dentin samples by solutions of EDTAHNa3 and different concentrations of EDTANa4 isolated and mixed with NaOCl was determined with the aid of the scanning electron microscope (SEM). The capacity of NaOCl to dissolve organic matter was determined by weighting fragments of bovine muscle before and after immersion in solutions of 1%, 2.5%, and 5% of NaOCl in different periods of time. Also, the effects of EDTAHNa3, EDTANa4 and HEDP on the organic matter dissolution by NaOCl were evaluated. The alterations produced by all solutions isolated and some irrigation protocols in the organic and inorganic components of the dentin surface were analysed by the attenuated total reflectance of Fourier transform infrared spectroscopy (ATR-FTIR) technique. Absorbance spectra were collected from the dentin surface before and after immersion of samples in the irrigants and the ratios of the amide III/phosphate and carbonate/phosphate bands were calculated. To quantify the adhesion of CHX to mineralized dentin and to dentin demineralized by different irrigation protocols, the areas of the band associated with CHX with the peak in 1492 cm1 were determined in spectra obtained by ATR-FTIR. The effects of different irrigation protocols in the roughness and wettability of dentin surface were measured with a benchtop roughness tester and the sessile drop technique, respectively. For the assays of microorganisms adhesion, samples were prepared and treated the same way and with the same irrigation protocols used in the roughness and wettability tests. Following, Candida albicans and Enterococcus faecalis were maintained in contact with the dentin for 2 hours and the samples were analyzed on the confocal laser scanning microscope (CLSM). Tests of push-out were performed to determine the impact of different irrigation protocols on the dentin bonding strength of AH Plus sealer over time. Canals of bovine incisors teeth were instrumented, irrigated and following obturated using only the sealer AH Plus. Half of the samples were submitted to pushout assessment 7 days after the obturation and the other half 20 months later. The results of the experiments showed that the EDTAHNa3 caused an almost complete and immediate loss of free available chlorine from NaOCl, whilst EDTANa4 promoted a slow and concentration-dependent decline. The smear layer was removed only by decalcifying solutions and in about 1 min by the 17% EDTAHNa3 and 5 min by the EDTANa4, both isolated or mixed with NaOCl. The increase in NaOCl concentration and contact time with the samples intensified the dissolution of organic matter. The mixtures of NaOCl with EDTANa4 and HEDP were able to dissolve the fragments of bovine muscle over-time, however, the EDTAHNa3 strongly affected the NaOCl dissolution capacity when they were mixed. The results of ATR-FTIR experiments showed that the increase in the NaOCl concentration intensified the deproteination of the dentin collagen with a reduction in the amide III/phosphate ratio. For the same decalcifying agent, the higher the concentration and immersion time the greater the removal of phosphate, exposure of the collagen matrix and consequently the increases in amide III/phosphate ratio. The PAA caused greater increases in amide III/phosphate ratio, followed by EDTAHNa3, EDTANa4 and HEDP and this order was maintained in the protocols in which NaOCl was used before the decalcifying agents. NaOCl required approximately 0.5 min to deproteinate the collagen matrix exposed after phosphate removal by EDTAHNa3 and PAA. The carbonate/phosphate ratio decreased after 30 s of samples immersion in solutions of NaOCl at 1%, 2.5% and 5% with no more alterations over time. The carbonate of the dentine was removed faster than phosphate by all decalcifying agents employed alone and in the irrigation protocols in which the use of the NaOCl was followed by the use of the EDTAHNa3, PAA and HEDP. For irrigation protocols that associate NaOCl with chelating solutions, the last irrigant used defined the final dentine amide III/phosphate and carbonate/phosphate ratios. For the ATR-FTIR analysis of CHX adhesion, the results showed that the adsorption of this irrigant to the dentin was potentiated when chelating agents were used prior to the CHX. In relation to the experiments of surface roughness, the saline solution, NaOCl, HEDP and CHX did not alter the roughness of the dentin, but EDTAHNa3 and PAA increased it. The wettability of the surface increased after the use of all irrigants, being the HEDP to cause the greater increases. In the assays of microorganisms adhesion, the smear layer and collagen exposed by the chelating agents favored the adhesion of E. faecalis. The C. albicans adhesion was major in surfaces with smear layer and more mineral. The use of CHX as the final irrigant reduced the adhesion of both microorganisms. The wettability did not influence the microorganisms adhesion, while increases in roughness seems to potentiate the adherence of E. faecalis. The experiments of bond strength of AH Plus to the dentin showed that the irrigation with NaOCl and mixture of NaOCl + EDTANa4 produced the lowest push-out bond strength values in 7 days compared to NaOCl + EDTAHNa3, NaOCl + EDTAHNa3 + NaOCl, NaOCl + EDTAHNa3 + CHX and the mixture of NaOCl + HEDP. After 20 months the lowest values were obtained in the groups irrigated with NaOCl and NaOCl + EDTAHNa3. The groups of NaOCl + EDTAHNa3 + NaOCl, mixture NaOCl + HEDP, and mixture NaOCl + EDTANa4 presented values of push-out bond strength in 20 months similar to the values in 7 days. It was possible to conclude that the irrigation solutions tested in this study have different effects in the organic and inorganic matter and some of them can affect the action of each other when mixed. Independent of being used isolated or combined in irrigation protocols, these irrigants cause modifications in the dentin physicochemical properties that influence the adhesion of AH Plus sealer in short and long term and the microorganisms adherence to thesurface in cases of recontaminations. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/25/25147/tde-16122021-110253/ |
url |
https://www.teses.usp.br/teses/disponiveis/25/25147/tde-16122021-110253/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257088014680064 |