Online near-infrared spectroscopy for soil attributes prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/ |
Resumo: | Precision agriculture (PA) is based on the identification of spatial and temporal variability of the attributes that influence agricultural production. In this sense, techniques that allow monitoring soil and crops in high spatial density have been studied by the PA community. Diffuse reflectance spectroscopy (DRS) is a technique that allows, especially in the near-infrared (NIR) region, to acquire online soil spectra, embedding sensors in agricultural machines. The use of this technique allows data acquisition in high spatial density, which, together with machine learning (ML), are transformed into quali-quantitative data of soil attributes. However, in tropical soils, especially in Brazil, this research area is still poorly developed compared to studies from Australia, the United States of America and Europe. The research project of this dissertation was proposed to expand the development of the technique in Brazilian tropical soils. An experimental area of the University of São Paulo, in Piracicaba-SP, was used to acquire online soil NIR spectra. Different statistical models were tested to predict soil chemical and physical attributes. Calibration and use protocols of DRS in the field were evaluated. The main findings of this dissertation were organized into three chapters. The first one addresses calibration protocols regarding the use of spectrum preprocessing techniques and different statistical models. The results suggest that the use of raw data combined with dimensionality reduction statistical models offer the most efficient strategy for calibration of predictive models. The second chapter addressed the insertion of samples from different areas in the calibration of ML models. The results showed more robust predictions when models were calibrated only with samples from the experimental area itself, denoting the importance of local calibration for the use of DRS NIR in online acquisition. In the third and last chapter, the area was revisited on a second day of spectral acquisition, three weeks after the first one, following the same experimental and instrumental criteria. The ML models calibrated on the first day were tested for prediction of soil attributes with spectra from the second day of acquisition. Low predictive performance of the models was reported in this scenario, indicating the need for local calibrations not only in space, but also in time, for the technique to perform properly. The results reported in this dissertation prove the potential of the technique for agriculture, as they show that it is possible to predict soil attributes with online NIR spectra. Furthermore, this work can help in the development of PA practices, and offer guidelines for future research that seek the development of DRS for prediction of soil attributes in the field, to establish its large-scale use in agriculture. |
id |
USP_1a399a0b818142b446b07a8f475b76f8 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21032023-182112 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Online near-infrared spectroscopy for soil attributes predictionEspectroscopia no infravermelho próximo para a predição de atributos do solo em tempo realAgricultura de precisãoAprendizado de máquinaDiffuse reflectance spectroscopyEspectroscopia de reflectância difusaMachine learningPrecision agricultureProximal soil sensingSensoriamento proximal do soloSoil variabilityVariabilidade do soloPrecision agriculture (PA) is based on the identification of spatial and temporal variability of the attributes that influence agricultural production. In this sense, techniques that allow monitoring soil and crops in high spatial density have been studied by the PA community. Diffuse reflectance spectroscopy (DRS) is a technique that allows, especially in the near-infrared (NIR) region, to acquire online soil spectra, embedding sensors in agricultural machines. The use of this technique allows data acquisition in high spatial density, which, together with machine learning (ML), are transformed into quali-quantitative data of soil attributes. However, in tropical soils, especially in Brazil, this research area is still poorly developed compared to studies from Australia, the United States of America and Europe. The research project of this dissertation was proposed to expand the development of the technique in Brazilian tropical soils. An experimental area of the University of São Paulo, in Piracicaba-SP, was used to acquire online soil NIR spectra. Different statistical models were tested to predict soil chemical and physical attributes. Calibration and use protocols of DRS in the field were evaluated. The main findings of this dissertation were organized into three chapters. The first one addresses calibration protocols regarding the use of spectrum preprocessing techniques and different statistical models. The results suggest that the use of raw data combined with dimensionality reduction statistical models offer the most efficient strategy for calibration of predictive models. The second chapter addressed the insertion of samples from different areas in the calibration of ML models. The results showed more robust predictions when models were calibrated only with samples from the experimental area itself, denoting the importance of local calibration for the use of DRS NIR in online acquisition. In the third and last chapter, the area was revisited on a second day of spectral acquisition, three weeks after the first one, following the same experimental and instrumental criteria. The ML models calibrated on the first day were tested for prediction of soil attributes with spectra from the second day of acquisition. Low predictive performance of the models was reported in this scenario, indicating the need for local calibrations not only in space, but also in time, for the technique to perform properly. The results reported in this dissertation prove the potential of the technique for agriculture, as they show that it is possible to predict soil attributes with online NIR spectra. Furthermore, this work can help in the development of PA practices, and offer guidelines for future research that seek the development of DRS for prediction of soil attributes in the field, to establish its large-scale use in agriculture.A agricultura de precisão (AP) baseia-se na identificação da variabilidade espacial e temporal dos atributos que influenciam a produção agrícola. Nesse sentido, técnicas que permitam monitorar o solo e as culturas em alta densidade espacial vêm sendo estudadas pela comunidade de AP. A espectroscopia de reflectância difusa (DRS) é um técnica que permite, sobretudo na região do infravermelho próximo (NIR), coletar espectros de solo direto no campo, utilizando sensores embarcados em máquinas agrícolas. O uso dessa técnica permite coletar pontos em alta densidade espacial que, em conjunto com o aprendizado de máquina (ML), se transformam em dados quali-quantitativos dos atributos do solo. Entretanto, em solos tropicais, principalmente no Brasil, essa área ainda é pouca desenvolvida em comparação a estudos, por exemplo, da Austrália, Estados Unidos e Europa. O projeto de pesquisa dessa dissertação foi proposto no âmbito de ampliar o desenvolvimento da técnica nos solos tropicais brasileiros. Uma área experimental da Universidade de São Paulo, em Piracicaba-SP, foi utilizada para a coleta de espectros de solo em tempo real no infravermelho próximo. Foram testados diferentes modelos estatísticos para predição de atributos químicos e físicos do solo. Protocolos de calibração e de uso da DRS em campo foram avaliados. Os principais resultados desta dissertação foram organizados em três capítulos. O primeiro aborda protocolos de calibração quanto ao uso de técnicas de pré-procesamento do espectro e diferentes modelos estatísticos. Os resultados sugerem que o uso de dados brutos em conjunto com modelos de redução de dimensionalidade do espectro multivariado do solo oferecem a estratégia mais eficiente para calibração dos modelos preditivos. O segundo capítulo abordou a inserção de amostras de diferentes áreas na calibração dos modelos de ML. Os resultados mostraram predições mais robustas quando modelos foram calibrados apenas com amostras da própria área experimental, denotando a importância da calibração local para uso da DRS NIR. No terceiro e último capítulo, a área foi revisitada em um segundo dia de coleta espectral, três semanas após a primeira, seguindo os mesmos critérios experimentais e instrumentais. Os modelos de ML calibrados no primeiro dia foram testados para predição dos atributos do solo com espectros da segunda coleta. Reportou-se baixa capacidade preditiva dos modelos neste caso, indicando a necessidade de calibrações locais não só no espaço, mas também no tempo, para que a técnica desempenhe corretamente. Os resultados reportados provam o potencial da técnica para a agricultura, pois mostram que é possível a predição de atributos do solo com espectros NIR coletados diretamente no campo. Ainda, este trabalho pode auxiliar no desenvolvimento das práticas de AP, e oferecer diretrizes para futuras pesquisas que busquem o desenvolvimento da DRS para predição de atributos do solo em tempo real, a fim de estabelecer seu uso em larga escala na agricultura.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloCanal Filho, Ricardo2023-01-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-03-22T17:40:32Zoai:teses.usp.br:tde-21032023-182112Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-03-22T17:40:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Online near-infrared spectroscopy for soil attributes prediction Espectroscopia no infravermelho próximo para a predição de atributos do solo em tempo real |
title |
Online near-infrared spectroscopy for soil attributes prediction |
spellingShingle |
Online near-infrared spectroscopy for soil attributes prediction Canal Filho, Ricardo Agricultura de precisão Aprendizado de máquina Diffuse reflectance spectroscopy Espectroscopia de reflectância difusa Machine learning Precision agriculture Proximal soil sensing Sensoriamento proximal do solo Soil variability Variabilidade do solo |
title_short |
Online near-infrared spectroscopy for soil attributes prediction |
title_full |
Online near-infrared spectroscopy for soil attributes prediction |
title_fullStr |
Online near-infrared spectroscopy for soil attributes prediction |
title_full_unstemmed |
Online near-infrared spectroscopy for soil attributes prediction |
title_sort |
Online near-infrared spectroscopy for soil attributes prediction |
author |
Canal Filho, Ricardo |
author_facet |
Canal Filho, Ricardo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Molin, Jose Paulo |
dc.contributor.author.fl_str_mv |
Canal Filho, Ricardo |
dc.subject.por.fl_str_mv |
Agricultura de precisão Aprendizado de máquina Diffuse reflectance spectroscopy Espectroscopia de reflectância difusa Machine learning Precision agriculture Proximal soil sensing Sensoriamento proximal do solo Soil variability Variabilidade do solo |
topic |
Agricultura de precisão Aprendizado de máquina Diffuse reflectance spectroscopy Espectroscopia de reflectância difusa Machine learning Precision agriculture Proximal soil sensing Sensoriamento proximal do solo Soil variability Variabilidade do solo |
description |
Precision agriculture (PA) is based on the identification of spatial and temporal variability of the attributes that influence agricultural production. In this sense, techniques that allow monitoring soil and crops in high spatial density have been studied by the PA community. Diffuse reflectance spectroscopy (DRS) is a technique that allows, especially in the near-infrared (NIR) region, to acquire online soil spectra, embedding sensors in agricultural machines. The use of this technique allows data acquisition in high spatial density, which, together with machine learning (ML), are transformed into quali-quantitative data of soil attributes. However, in tropical soils, especially in Brazil, this research area is still poorly developed compared to studies from Australia, the United States of America and Europe. The research project of this dissertation was proposed to expand the development of the technique in Brazilian tropical soils. An experimental area of the University of São Paulo, in Piracicaba-SP, was used to acquire online soil NIR spectra. Different statistical models were tested to predict soil chemical and physical attributes. Calibration and use protocols of DRS in the field were evaluated. The main findings of this dissertation were organized into three chapters. The first one addresses calibration protocols regarding the use of spectrum preprocessing techniques and different statistical models. The results suggest that the use of raw data combined with dimensionality reduction statistical models offer the most efficient strategy for calibration of predictive models. The second chapter addressed the insertion of samples from different areas in the calibration of ML models. The results showed more robust predictions when models were calibrated only with samples from the experimental area itself, denoting the importance of local calibration for the use of DRS NIR in online acquisition. In the third and last chapter, the area was revisited on a second day of spectral acquisition, three weeks after the first one, following the same experimental and instrumental criteria. The ML models calibrated on the first day were tested for prediction of soil attributes with spectra from the second day of acquisition. Low predictive performance of the models was reported in this scenario, indicating the need for local calibrations not only in space, but also in time, for the technique to perform properly. The results reported in this dissertation prove the potential of the technique for agriculture, as they show that it is possible to predict soil attributes with online NIR spectra. Furthermore, this work can help in the development of PA practices, and offer guidelines for future research that seek the development of DRS for prediction of soil attributes in the field, to establish its large-scale use in agriculture. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257237837316096 |