Online near-infrared spectroscopy for soil attributes prediction

Detalhes bibliográficos
Autor(a) principal: Canal Filho, Ricardo
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/
Resumo: Precision agriculture (PA) is based on the identification of spatial and temporal variability of the attributes that influence agricultural production. In this sense, techniques that allow monitoring soil and crops in high spatial density have been studied by the PA community. Diffuse reflectance spectroscopy (DRS) is a technique that allows, especially in the near-infrared (NIR) region, to acquire online soil spectra, embedding sensors in agricultural machines. The use of this technique allows data acquisition in high spatial density, which, together with machine learning (ML), are transformed into quali-quantitative data of soil attributes. However, in tropical soils, especially in Brazil, this research area is still poorly developed compared to studies from Australia, the United States of America and Europe. The research project of this dissertation was proposed to expand the development of the technique in Brazilian tropical soils. An experimental area of the University of São Paulo, in Piracicaba-SP, was used to acquire online soil NIR spectra. Different statistical models were tested to predict soil chemical and physical attributes. Calibration and use protocols of DRS in the field were evaluated. The main findings of this dissertation were organized into three chapters. The first one addresses calibration protocols regarding the use of spectrum preprocessing techniques and different statistical models. The results suggest that the use of raw data combined with dimensionality reduction statistical models offer the most efficient strategy for calibration of predictive models. The second chapter addressed the insertion of samples from different areas in the calibration of ML models. The results showed more robust predictions when models were calibrated only with samples from the experimental area itself, denoting the importance of local calibration for the use of DRS NIR in online acquisition. In the third and last chapter, the area was revisited on a second day of spectral acquisition, three weeks after the first one, following the same experimental and instrumental criteria. The ML models calibrated on the first day were tested for prediction of soil attributes with spectra from the second day of acquisition. Low predictive performance of the models was reported in this scenario, indicating the need for local calibrations not only in space, but also in time, for the technique to perform properly. The results reported in this dissertation prove the potential of the technique for agriculture, as they show that it is possible to predict soil attributes with online NIR spectra. Furthermore, this work can help in the development of PA practices, and offer guidelines for future research that seek the development of DRS for prediction of soil attributes in the field, to establish its large-scale use in agriculture.
id USP_1a399a0b818142b446b07a8f475b76f8
oai_identifier_str oai:teses.usp.br:tde-21032023-182112
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Online near-infrared spectroscopy for soil attributes predictionEspectroscopia no infravermelho próximo para a predição de atributos do solo em tempo realAgricultura de precisãoAprendizado de máquinaDiffuse reflectance spectroscopyEspectroscopia de reflectância difusaMachine learningPrecision agricultureProximal soil sensingSensoriamento proximal do soloSoil variabilityVariabilidade do soloPrecision agriculture (PA) is based on the identification of spatial and temporal variability of the attributes that influence agricultural production. In this sense, techniques that allow monitoring soil and crops in high spatial density have been studied by the PA community. Diffuse reflectance spectroscopy (DRS) is a technique that allows, especially in the near-infrared (NIR) region, to acquire online soil spectra, embedding sensors in agricultural machines. The use of this technique allows data acquisition in high spatial density, which, together with machine learning (ML), are transformed into quali-quantitative data of soil attributes. However, in tropical soils, especially in Brazil, this research area is still poorly developed compared to studies from Australia, the United States of America and Europe. The research project of this dissertation was proposed to expand the development of the technique in Brazilian tropical soils. An experimental area of the University of São Paulo, in Piracicaba-SP, was used to acquire online soil NIR spectra. Different statistical models were tested to predict soil chemical and physical attributes. Calibration and use protocols of DRS in the field were evaluated. The main findings of this dissertation were organized into three chapters. The first one addresses calibration protocols regarding the use of spectrum preprocessing techniques and different statistical models. The results suggest that the use of raw data combined with dimensionality reduction statistical models offer the most efficient strategy for calibration of predictive models. The second chapter addressed the insertion of samples from different areas in the calibration of ML models. The results showed more robust predictions when models were calibrated only with samples from the experimental area itself, denoting the importance of local calibration for the use of DRS NIR in online acquisition. In the third and last chapter, the area was revisited on a second day of spectral acquisition, three weeks after the first one, following the same experimental and instrumental criteria. The ML models calibrated on the first day were tested for prediction of soil attributes with spectra from the second day of acquisition. Low predictive performance of the models was reported in this scenario, indicating the need for local calibrations not only in space, but also in time, for the technique to perform properly. The results reported in this dissertation prove the potential of the technique for agriculture, as they show that it is possible to predict soil attributes with online NIR spectra. Furthermore, this work can help in the development of PA practices, and offer guidelines for future research that seek the development of DRS for prediction of soil attributes in the field, to establish its large-scale use in agriculture.A agricultura de precisão (AP) baseia-se na identificação da variabilidade espacial e temporal dos atributos que influenciam a produção agrícola. Nesse sentido, técnicas que permitam monitorar o solo e as culturas em alta densidade espacial vêm sendo estudadas pela comunidade de AP. A espectroscopia de reflectância difusa (DRS) é um técnica que permite, sobretudo na região do infravermelho próximo (NIR), coletar espectros de solo direto no campo, utilizando sensores embarcados em máquinas agrícolas. O uso dessa técnica permite coletar pontos em alta densidade espacial que, em conjunto com o aprendizado de máquina (ML), se transformam em dados quali-quantitativos dos atributos do solo. Entretanto, em solos tropicais, principalmente no Brasil, essa área ainda é pouca desenvolvida em comparação a estudos, por exemplo, da Austrália, Estados Unidos e Europa. O projeto de pesquisa dessa dissertação foi proposto no âmbito de ampliar o desenvolvimento da técnica nos solos tropicais brasileiros. Uma área experimental da Universidade de São Paulo, em Piracicaba-SP, foi utilizada para a coleta de espectros de solo em tempo real no infravermelho próximo. Foram testados diferentes modelos estatísticos para predição de atributos químicos e físicos do solo. Protocolos de calibração e de uso da DRS em campo foram avaliados. Os principais resultados desta dissertação foram organizados em três capítulos. O primeiro aborda protocolos de calibração quanto ao uso de técnicas de pré-procesamento do espectro e diferentes modelos estatísticos. Os resultados sugerem que o uso de dados brutos em conjunto com modelos de redução de dimensionalidade do espectro multivariado do solo oferecem a estratégia mais eficiente para calibração dos modelos preditivos. O segundo capítulo abordou a inserção de amostras de diferentes áreas na calibração dos modelos de ML. Os resultados mostraram predições mais robustas quando modelos foram calibrados apenas com amostras da própria área experimental, denotando a importância da calibração local para uso da DRS NIR. No terceiro e último capítulo, a área foi revisitada em um segundo dia de coleta espectral, três semanas após a primeira, seguindo os mesmos critérios experimentais e instrumentais. Os modelos de ML calibrados no primeiro dia foram testados para predição dos atributos do solo com espectros da segunda coleta. Reportou-se baixa capacidade preditiva dos modelos neste caso, indicando a necessidade de calibrações locais não só no espaço, mas também no tempo, para que a técnica desempenhe corretamente. Os resultados reportados provam o potencial da técnica para a agricultura, pois mostram que é possível a predição de atributos do solo com espectros NIR coletados diretamente no campo. Ainda, este trabalho pode auxiliar no desenvolvimento das práticas de AP, e oferecer diretrizes para futuras pesquisas que busquem o desenvolvimento da DRS para predição de atributos do solo em tempo real, a fim de estabelecer seu uso em larga escala na agricultura.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloCanal Filho, Ricardo2023-01-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-03-22T17:40:32Zoai:teses.usp.br:tde-21032023-182112Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-03-22T17:40:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Online near-infrared spectroscopy for soil attributes prediction
Espectroscopia no infravermelho próximo para a predição de atributos do solo em tempo real
title Online near-infrared spectroscopy for soil attributes prediction
spellingShingle Online near-infrared spectroscopy for soil attributes prediction
Canal Filho, Ricardo
Agricultura de precisão
Aprendizado de máquina
Diffuse reflectance spectroscopy
Espectroscopia de reflectância difusa
Machine learning
Precision agriculture
Proximal soil sensing
Sensoriamento proximal do solo
Soil variability
Variabilidade do solo
title_short Online near-infrared spectroscopy for soil attributes prediction
title_full Online near-infrared spectroscopy for soil attributes prediction
title_fullStr Online near-infrared spectroscopy for soil attributes prediction
title_full_unstemmed Online near-infrared spectroscopy for soil attributes prediction
title_sort Online near-infrared spectroscopy for soil attributes prediction
author Canal Filho, Ricardo
author_facet Canal Filho, Ricardo
author_role author
dc.contributor.none.fl_str_mv Molin, Jose Paulo
dc.contributor.author.fl_str_mv Canal Filho, Ricardo
dc.subject.por.fl_str_mv Agricultura de precisão
Aprendizado de máquina
Diffuse reflectance spectroscopy
Espectroscopia de reflectância difusa
Machine learning
Precision agriculture
Proximal soil sensing
Sensoriamento proximal do solo
Soil variability
Variabilidade do solo
topic Agricultura de precisão
Aprendizado de máquina
Diffuse reflectance spectroscopy
Espectroscopia de reflectância difusa
Machine learning
Precision agriculture
Proximal soil sensing
Sensoriamento proximal do solo
Soil variability
Variabilidade do solo
description Precision agriculture (PA) is based on the identification of spatial and temporal variability of the attributes that influence agricultural production. In this sense, techniques that allow monitoring soil and crops in high spatial density have been studied by the PA community. Diffuse reflectance spectroscopy (DRS) is a technique that allows, especially in the near-infrared (NIR) region, to acquire online soil spectra, embedding sensors in agricultural machines. The use of this technique allows data acquisition in high spatial density, which, together with machine learning (ML), are transformed into quali-quantitative data of soil attributes. However, in tropical soils, especially in Brazil, this research area is still poorly developed compared to studies from Australia, the United States of America and Europe. The research project of this dissertation was proposed to expand the development of the technique in Brazilian tropical soils. An experimental area of the University of São Paulo, in Piracicaba-SP, was used to acquire online soil NIR spectra. Different statistical models were tested to predict soil chemical and physical attributes. Calibration and use protocols of DRS in the field were evaluated. The main findings of this dissertation were organized into three chapters. The first one addresses calibration protocols regarding the use of spectrum preprocessing techniques and different statistical models. The results suggest that the use of raw data combined with dimensionality reduction statistical models offer the most efficient strategy for calibration of predictive models. The second chapter addressed the insertion of samples from different areas in the calibration of ML models. The results showed more robust predictions when models were calibrated only with samples from the experimental area itself, denoting the importance of local calibration for the use of DRS NIR in online acquisition. In the third and last chapter, the area was revisited on a second day of spectral acquisition, three weeks after the first one, following the same experimental and instrumental criteria. The ML models calibrated on the first day were tested for prediction of soil attributes with spectra from the second day of acquisition. Low predictive performance of the models was reported in this scenario, indicating the need for local calibrations not only in space, but also in time, for the technique to perform properly. The results reported in this dissertation prove the potential of the technique for agriculture, as they show that it is possible to predict soil attributes with online NIR spectra. Furthermore, this work can help in the development of PA practices, and offer guidelines for future research that seek the development of DRS for prediction of soil attributes in the field, to establish its large-scale use in agriculture.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/
url https://www.teses.usp.br/teses/disponiveis/11/11152/tde-21032023-182112/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257237837316096