Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look

Detalhes bibliográficos
Autor(a) principal: Horta, Michelle Matos
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-06072009-215138/
Resumo: Esta tese se concentra em aplicar os modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look. Dentro deste contexto, utilizou-se o algoritmo SEM em conjunto com os estimadores obtidos pelo método dos momentos para calcular as estimativas dos parâmetros do modelo de mistura das distribuições Wishart, Kp ou G0p. Cada uma destas distribuições possui parâmetros específicos que as diferem no ajuste dos dados com graus de homogeneidade variados. A distribuição Wishart descreve bem regiões com características mais homogêneas, como cultivo. Esta distribuição é muito utilizada na análise de dados SAR polarimétricos multi-look. As distribuições Kp e G0p possuem um parâmetro de rugosidade que as permitem descrever tanto regiões mais heterogêneas, como vegetação e áreas urbanas, quanto regiões homogêneas. Além dos modelos de mistura de uma única família de distribuições, também foi analisado o caso de um dicionário contendo as três famílias. Há comparações do método SEM proposto para os diferentes modelos com os métodos da literatura k-médias e EM utilizando imagens reais da banda L. O método SEM com a mistura de distribuições G0p forneceu os melhores resultados quando os outliers da imagem são desconsiderados. A distribuição G0p foi a mais flexível ao ajuste dos diferentes tipos de alvo. A distribuição Wishart foi robusta às diferentes inicializações. O método k-médias com a distribuição Wishart é robusto à segmentação de imagens contendo outliers, mas não é muito flexível à variabilidade das regiões heterogêneas. O modelo de mistura do dicionário de famílias melhora a log-verossimilhança do método SEM, mas apresenta resultados parecidos com os do modelo de mistura G0p. Para todos os tipos de inicialização e grupos, a distribuição G0p predominou no processo de seleção das distribuições do dicionário de famílias.
id USP_1a541d07b468a9731019a273ec10d991
oai_identifier_str oai:teses.usp.br:tde-06072009-215138
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-lookMulti-look polarimetric SAR image segmentation using mixture modelsAlgoritmo SEMFinite Mixture ModelsFully polarimetric SAR imagesImage SegmentationImagens SAR polarimétricas multi-lookModelos de Mistura de DistribuiçõesSegmentação de ImagensStochastic Expectation-Maximization AlgorithmEsta tese se concentra em aplicar os modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look. Dentro deste contexto, utilizou-se o algoritmo SEM em conjunto com os estimadores obtidos pelo método dos momentos para calcular as estimativas dos parâmetros do modelo de mistura das distribuições Wishart, Kp ou G0p. Cada uma destas distribuições possui parâmetros específicos que as diferem no ajuste dos dados com graus de homogeneidade variados. A distribuição Wishart descreve bem regiões com características mais homogêneas, como cultivo. Esta distribuição é muito utilizada na análise de dados SAR polarimétricos multi-look. As distribuições Kp e G0p possuem um parâmetro de rugosidade que as permitem descrever tanto regiões mais heterogêneas, como vegetação e áreas urbanas, quanto regiões homogêneas. Além dos modelos de mistura de uma única família de distribuições, também foi analisado o caso de um dicionário contendo as três famílias. Há comparações do método SEM proposto para os diferentes modelos com os métodos da literatura k-médias e EM utilizando imagens reais da banda L. O método SEM com a mistura de distribuições G0p forneceu os melhores resultados quando os outliers da imagem são desconsiderados. A distribuição G0p foi a mais flexível ao ajuste dos diferentes tipos de alvo. A distribuição Wishart foi robusta às diferentes inicializações. O método k-médias com a distribuição Wishart é robusto à segmentação de imagens contendo outliers, mas não é muito flexível à variabilidade das regiões heterogêneas. O modelo de mistura do dicionário de famílias melhora a log-verossimilhança do método SEM, mas apresenta resultados parecidos com os do modelo de mistura G0p. Para todos os tipos de inicialização e grupos, a distribuição G0p predominou no processo de seleção das distribuições do dicionário de famílias.The main focus of this thesis consists of the application of mixture models in multi-look polarimetric SAR image segmentation. Within this context, the SEM algorithm, together with the method of moments, were applied in the estimation of the Wishart, Kp and G0p mixture model parameters. Each one of these distributions has specific parameters that allows fitting data with different degrees of homogeneity. The Wishart distribution is suitable for modeling homogeneous regions, like crop fields for example. This distribution is widely used in multi-look polarimetric SAR data analysis. The distributions Kp and G0p have a roughness parameter that allows them to describe both heterogeneous regions, as vegetation and urban areas, and homogeneous regions. Besides adopting mixture models of a single family of distributions, the use of a dictionary with all the three family of distributions was proposed and analyzed. Also, a comparison between the performance of the proposed SEM method, considering the different models in real L-band images and two widely known techniques described in literature (k-means and EM algorithms), are shown and discussed. The proposed SEM method, considering a G0p mixture model combined with a outlier removal stage, provided the best classication results. The G0p distribution was the most flexible for fitting the different kinds of data. The Wishart distribution was robust for different initializations. The k-means algorithm with Wishart distribution is robust for segmentation of SAR images containing outliers, but it is not so flexible to variabilities in heterogeneous regions. The mixture model considering the dictionary of distributions improves the SEM method log-likelihood, but presents similar results to those of G0p mixture model. For all types of initializations and clusters, the G0p prevailed in the distribution selection process of the dictionary of distributions.Biblioteca Digitais de Teses e Dissertações da USPMascarenhas, Nelson Delfino D\'ÁvilaHorta, Michelle Matos2009-06-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-06072009-215138/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-06072009-215138Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
Multi-look polarimetric SAR image segmentation using mixture models
title Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
spellingShingle Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
Horta, Michelle Matos
Algoritmo SEM
Finite Mixture Models
Fully polarimetric SAR images
Image Segmentation
Imagens SAR polarimétricas multi-look
Modelos de Mistura de Distribuições
Segmentação de Imagens
Stochastic Expectation-Maximization Algorithm
title_short Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
title_full Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
title_fullStr Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
title_full_unstemmed Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
title_sort Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look
author Horta, Michelle Matos
author_facet Horta, Michelle Matos
author_role author
dc.contributor.none.fl_str_mv Mascarenhas, Nelson Delfino D\'Ávila
dc.contributor.author.fl_str_mv Horta, Michelle Matos
dc.subject.por.fl_str_mv Algoritmo SEM
Finite Mixture Models
Fully polarimetric SAR images
Image Segmentation
Imagens SAR polarimétricas multi-look
Modelos de Mistura de Distribuições
Segmentação de Imagens
Stochastic Expectation-Maximization Algorithm
topic Algoritmo SEM
Finite Mixture Models
Fully polarimetric SAR images
Image Segmentation
Imagens SAR polarimétricas multi-look
Modelos de Mistura de Distribuições
Segmentação de Imagens
Stochastic Expectation-Maximization Algorithm
description Esta tese se concentra em aplicar os modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look. Dentro deste contexto, utilizou-se o algoritmo SEM em conjunto com os estimadores obtidos pelo método dos momentos para calcular as estimativas dos parâmetros do modelo de mistura das distribuições Wishart, Kp ou G0p. Cada uma destas distribuições possui parâmetros específicos que as diferem no ajuste dos dados com graus de homogeneidade variados. A distribuição Wishart descreve bem regiões com características mais homogêneas, como cultivo. Esta distribuição é muito utilizada na análise de dados SAR polarimétricos multi-look. As distribuições Kp e G0p possuem um parâmetro de rugosidade que as permitem descrever tanto regiões mais heterogêneas, como vegetação e áreas urbanas, quanto regiões homogêneas. Além dos modelos de mistura de uma única família de distribuições, também foi analisado o caso de um dicionário contendo as três famílias. Há comparações do método SEM proposto para os diferentes modelos com os métodos da literatura k-médias e EM utilizando imagens reais da banda L. O método SEM com a mistura de distribuições G0p forneceu os melhores resultados quando os outliers da imagem são desconsiderados. A distribuição G0p foi a mais flexível ao ajuste dos diferentes tipos de alvo. A distribuição Wishart foi robusta às diferentes inicializações. O método k-médias com a distribuição Wishart é robusto à segmentação de imagens contendo outliers, mas não é muito flexível à variabilidade das regiões heterogêneas. O modelo de mistura do dicionário de famílias melhora a log-verossimilhança do método SEM, mas apresenta resultados parecidos com os do modelo de mistura G0p. Para todos os tipos de inicialização e grupos, a distribuição G0p predominou no processo de seleção das distribuições do dicionário de famílias.
publishDate 2009
dc.date.none.fl_str_mv 2009-06-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-06072009-215138/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-06072009-215138/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256719768420352