Modelos bayesianos zero-modificados para séries temporais de contagem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-093829/ |
Resumo: | Neste trabalho são apresentados dois modelos bayesianos zero-modificados(ZM) para séries temporais de contagem: Poisson ARMA zero-modificado e COM-Poisson ARMA zero-modificado. O segundo modelo permite uma flexibilidade maior por possuir um parâmetro adicional que comporta dados com maior sobredispersão ou subdispersão em relação ao modelo Poisson ARMA ZM. Os modelos são ilustrados por meio de aplicação em dados artificiais e em dois conjuntos de dados reais. Tanto o modelo Poisson ARMAZM quanto o modelo COM-Poisson ARMA ZM se mostraram competitivos para modelar dados de contagem zero-modificados, tendo sido estudado o ajuste dos modelos aos dados por meio da análise preditiva a posteriori. A comparação de modelos foi realizada por meio do critério de informação da deviância (DIC). Finalmente, foi realizado um estudo de previsão para seis períodos à frente. De maneira geral,o modelo COM-Poisson ARMAZM, apesar de possuir um parâmetro adicional em relação ao modelo Poisson ARMAZM, obteve valores de DIC próximos aos do modelo Poisson ARMA ZM. Como o modelo COM-Poisson ARMAZM possui como caso particular o modelo Poisson ARMA ZM, tendo a vantagem de ser mais flexível, o modelo COM-Poisson ARMAZM é proposto como uma alternativa para dados de contagem com modificação na contagem de zeros. |
id |
USP_1b097e7a7d5dc5ebaab0d24b0442ef67 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24072020-093829 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos bayesianos zero-modificados para séries temporais de contagemBayesian zero-modified models for count time seriesCOM-Poisson distributionCount dataDados de contagemDistribuição COM-PoissonGeneralized ARMA modelsModelos generalizados ARMAModelos zero-modificadosZero-modified modelsNeste trabalho são apresentados dois modelos bayesianos zero-modificados(ZM) para séries temporais de contagem: Poisson ARMA zero-modificado e COM-Poisson ARMA zero-modificado. O segundo modelo permite uma flexibilidade maior por possuir um parâmetro adicional que comporta dados com maior sobredispersão ou subdispersão em relação ao modelo Poisson ARMA ZM. Os modelos são ilustrados por meio de aplicação em dados artificiais e em dois conjuntos de dados reais. Tanto o modelo Poisson ARMAZM quanto o modelo COM-Poisson ARMA ZM se mostraram competitivos para modelar dados de contagem zero-modificados, tendo sido estudado o ajuste dos modelos aos dados por meio da análise preditiva a posteriori. A comparação de modelos foi realizada por meio do critério de informação da deviância (DIC). Finalmente, foi realizado um estudo de previsão para seis períodos à frente. De maneira geral,o modelo COM-Poisson ARMAZM, apesar de possuir um parâmetro adicional em relação ao modelo Poisson ARMAZM, obteve valores de DIC próximos aos do modelo Poisson ARMA ZM. Como o modelo COM-Poisson ARMAZM possui como caso particular o modelo Poisson ARMA ZM, tendo a vantagem de ser mais flexível, o modelo COM-Poisson ARMAZM é proposto como uma alternativa para dados de contagem com modificação na contagem de zeros.This work presents two Bayesian zero-modified (ZM) models for count time series: zero-modified Poisson ARMA and zero-modified COM-Poisson ARMA. The latter allows a greater flexibility since it has an aditional parameter which accomodates greater subdispersion or overdispersion in comparison with the ZM Poisson ARMA model. The models are applied to simulated data and two real data sets. Both ZM Poisson ARMA and ZM COM-Poisson ARMA performed very well in zero-modified data. The goodness of fit was studied using posterior predictive checks. Model comparison was done using the deviance information criterion (DIC). Finally, a forecast study of six-steps-ahead was performed. In general, the ZM COM-Poisson model,although having an aditional parameter in comparison with the ZM Poisson ARMA model, showed DIC values similar to the DIC values of the ZM Poisson ARMA model. Since the ZM COM-Poisson ARMA model has the ZM Poisson ARMA model as a particular case, having the advantage of being more flexible, the ZM COM-Poisson ARMA model is proposed as an alternative to zero-modified count data.Biblioteca Digitais de Teses e Dissertações da USPAndrade Filho, Marinho Gomes deAssis, Caroline Mendes de2020-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-093829/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-08-13T00:46:32Zoai:teses.usp.br:tde-24072020-093829Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-13T00:46:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos bayesianos zero-modificados para séries temporais de contagem Bayesian zero-modified models for count time series |
title |
Modelos bayesianos zero-modificados para séries temporais de contagem |
spellingShingle |
Modelos bayesianos zero-modificados para séries temporais de contagem Assis, Caroline Mendes de COM-Poisson distribution Count data Dados de contagem Distribuição COM-Poisson Generalized ARMA models Modelos generalizados ARMA Modelos zero-modificados Zero-modified models |
title_short |
Modelos bayesianos zero-modificados para séries temporais de contagem |
title_full |
Modelos bayesianos zero-modificados para séries temporais de contagem |
title_fullStr |
Modelos bayesianos zero-modificados para séries temporais de contagem |
title_full_unstemmed |
Modelos bayesianos zero-modificados para séries temporais de contagem |
title_sort |
Modelos bayesianos zero-modificados para séries temporais de contagem |
author |
Assis, Caroline Mendes de |
author_facet |
Assis, Caroline Mendes de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andrade Filho, Marinho Gomes de |
dc.contributor.author.fl_str_mv |
Assis, Caroline Mendes de |
dc.subject.por.fl_str_mv |
COM-Poisson distribution Count data Dados de contagem Distribuição COM-Poisson Generalized ARMA models Modelos generalizados ARMA Modelos zero-modificados Zero-modified models |
topic |
COM-Poisson distribution Count data Dados de contagem Distribuição COM-Poisson Generalized ARMA models Modelos generalizados ARMA Modelos zero-modificados Zero-modified models |
description |
Neste trabalho são apresentados dois modelos bayesianos zero-modificados(ZM) para séries temporais de contagem: Poisson ARMA zero-modificado e COM-Poisson ARMA zero-modificado. O segundo modelo permite uma flexibilidade maior por possuir um parâmetro adicional que comporta dados com maior sobredispersão ou subdispersão em relação ao modelo Poisson ARMA ZM. Os modelos são ilustrados por meio de aplicação em dados artificiais e em dois conjuntos de dados reais. Tanto o modelo Poisson ARMAZM quanto o modelo COM-Poisson ARMA ZM se mostraram competitivos para modelar dados de contagem zero-modificados, tendo sido estudado o ajuste dos modelos aos dados por meio da análise preditiva a posteriori. A comparação de modelos foi realizada por meio do critério de informação da deviância (DIC). Finalmente, foi realizado um estudo de previsão para seis períodos à frente. De maneira geral,o modelo COM-Poisson ARMAZM, apesar de possuir um parâmetro adicional em relação ao modelo Poisson ARMAZM, obteve valores de DIC próximos aos do modelo Poisson ARMA ZM. Como o modelo COM-Poisson ARMAZM possui como caso particular o modelo Poisson ARMA ZM, tendo a vantagem de ser mais flexível, o modelo COM-Poisson ARMAZM é proposto como uma alternativa para dados de contagem com modificação na contagem de zeros. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-093829/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-093829/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257309695180800 |