On the regularization of the recursive least squares algorithm.

Detalhes bibliográficos
Autor(a) principal: Tsakiris, Manolis
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-21102010-101424/
Resumo: This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization.
id USP_1b64b4bf5052ee6161096bdc4d087a08
oai_identifier_str oai:teses.usp.br:tde-21102010-101424
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling On the regularization of the recursive least squares algorithm.Sobre a regularização do algoritmo dos mínimos quadrados recursivos.Array formsFiltros elétricos adaptativosFinite precisionMínimos quadradosRecursive least squaresRegularizationRobustezThis thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization.Esta tese trata da regularização do algoritmo dos mínimos-quadrados recursivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo algoritmo array com matriz de regularização genérica e com ponderação dos dados exponencialmente decrescente no tempo é apresentado. O algoritmo é regularizado via perturbação direta da inversa da matriz de auto-correlação (Pi) por uma matriz genérica. Posteriormente, as equações recursivas são colocadas na forma array através de transformações unitárias. O preço a ser pago é o aumento na complexidade computacional, que passa a ser de ordem cúbica. A robustez do algoritmo resultante ´e demonstrada via simula¸coes quando comparado com algoritmos alternativos existentes na literatura no contexto de beamforming adaptativo, no qual geralmente filtros com ordem pequena sao empregados, e complexidade computacional deixa de ser fator relevante. Na segunda parte do trabalho, um critério alternativo ´e motivado e proposto para ajuste dinâmico da regularização do algoritmo RLS convencional. A regularização é implementada pela adição de ruído branco no sinal de entrada (dithering), cuja variância é controlada por um algoritmo simples que explora o critério proposto. O novo critério pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a precisão numérica da solução de um sistema linear de equações perturbado e sua distância da solução do sistema original não-perturbado, para uma dada precisão. As simulações mostram que tal critério pode ser efetivamente empregado para compensação de números de condicionamento (CN) elevados, baixa precisão numérica, bem como valores de regularização excessivamente elevados.Biblioteca Digitais de Teses e Dissertações da USPLopes, Cassio GuimarãesTsakiris, Manolis2010-06-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-21102010-101424/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:03:48Zoai:teses.usp.br:tde-21102010-101424Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:48Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On the regularization of the recursive least squares algorithm.
Sobre a regularização do algoritmo dos mínimos quadrados recursivos.
title On the regularization of the recursive least squares algorithm.
spellingShingle On the regularization of the recursive least squares algorithm.
Tsakiris, Manolis
Array forms
Filtros elétricos adaptativos
Finite precision
Mínimos quadrados
Recursive least squares
Regularization
Robustez
title_short On the regularization of the recursive least squares algorithm.
title_full On the regularization of the recursive least squares algorithm.
title_fullStr On the regularization of the recursive least squares algorithm.
title_full_unstemmed On the regularization of the recursive least squares algorithm.
title_sort On the regularization of the recursive least squares algorithm.
author Tsakiris, Manolis
author_facet Tsakiris, Manolis
author_role author
dc.contributor.none.fl_str_mv Lopes, Cassio Guimarães
dc.contributor.author.fl_str_mv Tsakiris, Manolis
dc.subject.por.fl_str_mv Array forms
Filtros elétricos adaptativos
Finite precision
Mínimos quadrados
Recursive least squares
Regularization
Robustez
topic Array forms
Filtros elétricos adaptativos
Finite precision
Mínimos quadrados
Recursive least squares
Regularization
Robustez
description This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization.
publishDate 2010
dc.date.none.fl_str_mv 2010-06-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-21102010-101424/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-21102010-101424/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257251682713600