Categories of commutative semicartesian quantales valued sets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/ |
Resumo: | The main objective of this work is to provide descriptions of categories that have properties to some extent analogous to local topos. At the same time, these categories have a more comprehensive logical counterpart than intuitionistic logic algebraized by Heyting algebras and categorized in higher order in topos and also ukasiewicz logic algebraized by MV-algebras , these being a categorization of BCK- lattices, algebraization of affine logic. Instead of using some kind of usual sheaf categories, that is, categories of contravariant functors satisfying certain gluing conditions, this work explored the realization through sets of values in semicartesian commutative quantales (Q-Sets), as well as the categories defined by them. In addition to considering appropriate versions of different types of Q-Sets already existing in the literature for other classes of quantales, such as separable ones, with gluing property, and complete singletons; a new approach to the notion of Q-sets with restriction property, more suitable for the non-idempotent case, was also presented. Two well-known notions of morphism, functional and relational, are combined with the different types of proposed Q-sets, to generate a range of related categories with good properties. They are complete, cocomplete, locally presentable categories, have an extreme subobject classifier, and generators, and are closed monoidal. Part of these properties is effective, meaning that the precise description of the categorical constructions of limits, colimits, and other objects has provided. The precise descriptions characterizing various types of morphisms from these different categories were also provided. |
id |
USP_1b70295431cdb2688c82ff44410a8bde |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16082024-205616 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Categories of commutative semicartesian quantales valued setsCategorias de conjuntos a valores em quantales comutativos semicartesianosCategorias monoidaisConjuntos a valores em quantalesLógicas não-clássicasMonoidal categories.Non-classical logicsQuantale valued setsQuantalesQuantalesThe main objective of this work is to provide descriptions of categories that have properties to some extent analogous to local topos. At the same time, these categories have a more comprehensive logical counterpart than intuitionistic logic algebraized by Heyting algebras and categorized in higher order in topos and also ukasiewicz logic algebraized by MV-algebras , these being a categorization of BCK- lattices, algebraization of affine logic. Instead of using some kind of usual sheaf categories, that is, categories of contravariant functors satisfying certain gluing conditions, this work explored the realization through sets of values in semicartesian commutative quantales (Q-Sets), as well as the categories defined by them. In addition to considering appropriate versions of different types of Q-Sets already existing in the literature for other classes of quantales, such as separable ones, with gluing property, and complete singletons; a new approach to the notion of Q-sets with restriction property, more suitable for the non-idempotent case, was also presented. Two well-known notions of morphism, functional and relational, are combined with the different types of proposed Q-sets, to generate a range of related categories with good properties. They are complete, cocomplete, locally presentable categories, have an extreme subobject classifier, and generators, and are closed monoidal. Part of these properties is effective, meaning that the precise description of the categorical constructions of limits, colimits, and other objects has provided. The precise descriptions characterizing various types of morphisms from these different categories were also provided.O principal objetivo desse trabalho é o de fornecer descrições de categorias que tenham propriedades até certo ponto análogas a de topos locálicos. Ao mesmo tempo, essas categorias possuem uma contrapartida lógica mais abrangente que a da lógica intuicionista algebrizada pelas álgebras de Heyting e categorificada em ordem superior em topos e também da lógica de ukasiewicz algebrizada pelas MV-álgebras , sendo essas uma categorificação dos BCK-reticulados, algebrização da lógica afim. Ao invés de se utilizar de algum tipo de categorias de feixes usuais, isso é, categorias de funtores contravariantes satisfazendo certas condições de colagem, esse trabalho explorou a realização por meio de conjuntos a valores em quantales comutativos semicartesianos (Q-Sets), bem como as categorias definidas por eles. Além de considerar versões apropriadas de diferentes tipos de Q-Sets já existentes na literatura para outras classes de quantales, como os separáveis, com propriedade de colagem e singleton completos; foi apresentado também uma nova abordagem para noção de Q-sets com propriedade de restrição, mais adequada para o caso não idempotente. Duas conhecidas noções de morfismo, funcional e relacional, são combinadas com os diferentes tipos de Q-sets propostos, para gerar uma gama de categorias relacionadas com boas propriedades. São categorias completas, cocompletas, localmente presentáveis, possuem classificador de subobjeto extremal, geradores e são monoidal fechadas. Parte dessas propriedades é efetiva, no sentido de que a descrição precisa das construções categoriais dos limites, colimites e demais objetos foram fornecidas. Foram também encontradas descrições precisas que caracterizam vários tipos de morfismos dessas diferentes categorias.Biblioteca Digitais de Teses e Dissertações da USPMariano, Hugo LuizMendes, Caio de Andrade2024-06-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-09-02T11:03:02Zoai:teses.usp.br:tde-16082024-205616Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-09-02T11:03:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Categories of commutative semicartesian quantales valued sets Categorias de conjuntos a valores em quantales comutativos semicartesianos |
title |
Categories of commutative semicartesian quantales valued sets |
spellingShingle |
Categories of commutative semicartesian quantales valued sets Mendes, Caio de Andrade Categorias monoidais Conjuntos a valores em quantales Lógicas não-clássicas Monoidal categories. Non-classical logics Quantale valued sets Quantales Quantales |
title_short |
Categories of commutative semicartesian quantales valued sets |
title_full |
Categories of commutative semicartesian quantales valued sets |
title_fullStr |
Categories of commutative semicartesian quantales valued sets |
title_full_unstemmed |
Categories of commutative semicartesian quantales valued sets |
title_sort |
Categories of commutative semicartesian quantales valued sets |
author |
Mendes, Caio de Andrade |
author_facet |
Mendes, Caio de Andrade |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mariano, Hugo Luiz |
dc.contributor.author.fl_str_mv |
Mendes, Caio de Andrade |
dc.subject.por.fl_str_mv |
Categorias monoidais Conjuntos a valores em quantales Lógicas não-clássicas Monoidal categories. Non-classical logics Quantale valued sets Quantales Quantales |
topic |
Categorias monoidais Conjuntos a valores em quantales Lógicas não-clássicas Monoidal categories. Non-classical logics Quantale valued sets Quantales Quantales |
description |
The main objective of this work is to provide descriptions of categories that have properties to some extent analogous to local topos. At the same time, these categories have a more comprehensive logical counterpart than intuitionistic logic algebraized by Heyting algebras and categorized in higher order in topos and also ukasiewicz logic algebraized by MV-algebras , these being a categorization of BCK- lattices, algebraization of affine logic. Instead of using some kind of usual sheaf categories, that is, categories of contravariant functors satisfying certain gluing conditions, this work explored the realization through sets of values in semicartesian commutative quantales (Q-Sets), as well as the categories defined by them. In addition to considering appropriate versions of different types of Q-Sets already existing in the literature for other classes of quantales, such as separable ones, with gluing property, and complete singletons; a new approach to the notion of Q-sets with restriction property, more suitable for the non-idempotent case, was also presented. Two well-known notions of morphism, functional and relational, are combined with the different types of proposed Q-sets, to generate a range of related categories with good properties. They are complete, cocomplete, locally presentable categories, have an extreme subobject classifier, and generators, and are closed monoidal. Part of these properties is effective, meaning that the precise description of the categorical constructions of limits, colimits, and other objects has provided. The precise descriptions characterizing various types of morphisms from these different categories were also provided. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256512273055744 |