Categories of commutative semicartesian quantales valued sets

Detalhes bibliográficos
Autor(a) principal: Mendes, Caio de Andrade
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/
Resumo: The main objective of this work is to provide descriptions of categories that have properties to some extent analogous to local topos. At the same time, these categories have a more comprehensive logical counterpart than intuitionistic logic algebraized by Heyting algebras and categorized in higher order in topos and also ukasiewicz logic algebraized by MV-algebras , these being a categorization of BCK- lattices, algebraization of affine logic. Instead of using some kind of usual sheaf categories, that is, categories of contravariant functors satisfying certain gluing conditions, this work explored the realization through sets of values in semicartesian commutative quantales (Q-Sets), as well as the categories defined by them. In addition to considering appropriate versions of different types of Q-Sets already existing in the literature for other classes of quantales, such as separable ones, with gluing property, and complete singletons; a new approach to the notion of Q-sets with restriction property, more suitable for the non-idempotent case, was also presented. Two well-known notions of morphism, functional and relational, are combined with the different types of proposed Q-sets, to generate a range of related categories with good properties. They are complete, cocomplete, locally presentable categories, have an extreme subobject classifier, and generators, and are closed monoidal. Part of these properties is effective, meaning that the precise description of the categorical constructions of limits, colimits, and other objects has provided. The precise descriptions characterizing various types of morphisms from these different categories were also provided.
id USP_1b70295431cdb2688c82ff44410a8bde
oai_identifier_str oai:teses.usp.br:tde-16082024-205616
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Categories of commutative semicartesian quantales valued setsCategorias de conjuntos a valores em quantales comutativos semicartesianosCategorias monoidaisConjuntos a valores em quantalesLógicas não-clássicasMonoidal categories.Non-classical logicsQuantale valued setsQuantalesQuantalesThe main objective of this work is to provide descriptions of categories that have properties to some extent analogous to local topos. At the same time, these categories have a more comprehensive logical counterpart than intuitionistic logic algebraized by Heyting algebras and categorized in higher order in topos and also ukasiewicz logic algebraized by MV-algebras , these being a categorization of BCK- lattices, algebraization of affine logic. Instead of using some kind of usual sheaf categories, that is, categories of contravariant functors satisfying certain gluing conditions, this work explored the realization through sets of values in semicartesian commutative quantales (Q-Sets), as well as the categories defined by them. In addition to considering appropriate versions of different types of Q-Sets already existing in the literature for other classes of quantales, such as separable ones, with gluing property, and complete singletons; a new approach to the notion of Q-sets with restriction property, more suitable for the non-idempotent case, was also presented. Two well-known notions of morphism, functional and relational, are combined with the different types of proposed Q-sets, to generate a range of related categories with good properties. They are complete, cocomplete, locally presentable categories, have an extreme subobject classifier, and generators, and are closed monoidal. Part of these properties is effective, meaning that the precise description of the categorical constructions of limits, colimits, and other objects has provided. The precise descriptions characterizing various types of morphisms from these different categories were also provided.O principal objetivo desse trabalho é o de fornecer descrições de categorias que tenham propriedades até certo ponto análogas a de topos locálicos. Ao mesmo tempo, essas categorias possuem uma contrapartida lógica mais abrangente que a da lógica intuicionista algebrizada pelas álgebras de Heyting e categorificada em ordem superior em topos e também da lógica de ukasiewicz algebrizada pelas MV-álgebras , sendo essas uma categorificação dos BCK-reticulados, algebrização da lógica afim. Ao invés de se utilizar de algum tipo de categorias de feixes usuais, isso é, categorias de funtores contravariantes satisfazendo certas condições de colagem, esse trabalho explorou a realização por meio de conjuntos a valores em quantales comutativos semicartesianos (Q-Sets), bem como as categorias definidas por eles. Além de considerar versões apropriadas de diferentes tipos de Q-Sets já existentes na literatura para outras classes de quantales, como os separáveis, com propriedade de colagem e singleton completos; foi apresentado também uma nova abordagem para noção de Q-sets com propriedade de restrição, mais adequada para o caso não idempotente. Duas conhecidas noções de morfismo, funcional e relacional, são combinadas com os diferentes tipos de Q-sets propostos, para gerar uma gama de categorias relacionadas com boas propriedades. São categorias completas, cocompletas, localmente presentáveis, possuem classificador de subobjeto extremal, geradores e são monoidal fechadas. Parte dessas propriedades é efetiva, no sentido de que a descrição precisa das construções categoriais dos limites, colimites e demais objetos foram fornecidas. Foram também encontradas descrições precisas que caracterizam vários tipos de morfismos dessas diferentes categorias.Biblioteca Digitais de Teses e Dissertações da USPMariano, Hugo LuizMendes, Caio de Andrade2024-06-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-09-02T11:03:02Zoai:teses.usp.br:tde-16082024-205616Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-09-02T11:03:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Categories of commutative semicartesian quantales valued sets
Categorias de conjuntos a valores em quantales comutativos semicartesianos
title Categories of commutative semicartesian quantales valued sets
spellingShingle Categories of commutative semicartesian quantales valued sets
Mendes, Caio de Andrade
Categorias monoidais
Conjuntos a valores em quantales
Lógicas não-clássicas
Monoidal categories.
Non-classical logics
Quantale valued sets
Quantales
Quantales
title_short Categories of commutative semicartesian quantales valued sets
title_full Categories of commutative semicartesian quantales valued sets
title_fullStr Categories of commutative semicartesian quantales valued sets
title_full_unstemmed Categories of commutative semicartesian quantales valued sets
title_sort Categories of commutative semicartesian quantales valued sets
author Mendes, Caio de Andrade
author_facet Mendes, Caio de Andrade
author_role author
dc.contributor.none.fl_str_mv Mariano, Hugo Luiz
dc.contributor.author.fl_str_mv Mendes, Caio de Andrade
dc.subject.por.fl_str_mv Categorias monoidais
Conjuntos a valores em quantales
Lógicas não-clássicas
Monoidal categories.
Non-classical logics
Quantale valued sets
Quantales
Quantales
topic Categorias monoidais
Conjuntos a valores em quantales
Lógicas não-clássicas
Monoidal categories.
Non-classical logics
Quantale valued sets
Quantales
Quantales
description The main objective of this work is to provide descriptions of categories that have properties to some extent analogous to local topos. At the same time, these categories have a more comprehensive logical counterpart than intuitionistic logic algebraized by Heyting algebras and categorized in higher order in topos and also ukasiewicz logic algebraized by MV-algebras , these being a categorization of BCK- lattices, algebraization of affine logic. Instead of using some kind of usual sheaf categories, that is, categories of contravariant functors satisfying certain gluing conditions, this work explored the realization through sets of values in semicartesian commutative quantales (Q-Sets), as well as the categories defined by them. In addition to considering appropriate versions of different types of Q-Sets already existing in the literature for other classes of quantales, such as separable ones, with gluing property, and complete singletons; a new approach to the notion of Q-sets with restriction property, more suitable for the non-idempotent case, was also presented. Two well-known notions of morphism, functional and relational, are combined with the different types of proposed Q-sets, to generate a range of related categories with good properties. They are complete, cocomplete, locally presentable categories, have an extreme subobject classifier, and generators, and are closed monoidal. Part of these properties is effective, meaning that the precise description of the categorical constructions of limits, colimits, and other objects has provided. The precise descriptions characterizing various types of morphisms from these different categories were also provided.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/
url https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16082024-205616/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256512273055744