Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3139/tde-08062022-080239/ |
Resumo: | This thesis proposes contributions for modeling and control of a class of nonlinear systems using linear parameter-varying (LPV) models. As a first contribution, two modeling techniques specialized in the generation of LPV models with polynomial dependence on the parameters (called LPV parameters) are proposed. If the parameters are related to states or inputs, the model is called quasi-LPV. The first technique, based on Taylor series expansion, produces a more accurate model around an operating point when compared to classical linearization techniques. The second approach is based on a polynomial interpolation algorithm and yields a family of linear models within a pre-established operating range, being especially suitable for dealing with reference tracking problems. The second contribution of the thesis is a set of conditions for gain-scheduled control of LPV or quasi-LPV systems. Stabilization, H2 and H control design conditions by state and output feedback static and full-order dynamic are proposed, being solved in terms of linear matrix inequalities and search on a scalar parameter confined in the range (1, 1). All classes of controllers can present gains with arbitrary degree polynomial dependence on the LPV parameters, in general providing less conservative results as the degrees increase. In order to validate the contributions of this thesis, the proposed modeling and control techniques are applied in some mechatronic systems, considering simulations and practical experiments. |
id |
USP_1bec2e04a31922678dd9b9c2de20df59 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08062022-080239 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems.Contribuições para modelagem LPV e controle por ganho escalonado aplicados em sistemas mecatrônicos.Controle (Teoria de sistemas e controle)Dynamic output-feedback controllerGain-scheduledH infinite normH2 normLMILPV modelingModelos não linearesQuasi-LPVSistemas dinâmicosState-feedback controllerStatic output-feedback controllerThis thesis proposes contributions for modeling and control of a class of nonlinear systems using linear parameter-varying (LPV) models. As a first contribution, two modeling techniques specialized in the generation of LPV models with polynomial dependence on the parameters (called LPV parameters) are proposed. If the parameters are related to states or inputs, the model is called quasi-LPV. The first technique, based on Taylor series expansion, produces a more accurate model around an operating point when compared to classical linearization techniques. The second approach is based on a polynomial interpolation algorithm and yields a family of linear models within a pre-established operating range, being especially suitable for dealing with reference tracking problems. The second contribution of the thesis is a set of conditions for gain-scheduled control of LPV or quasi-LPV systems. Stabilization, H2 and H control design conditions by state and output feedback static and full-order dynamic are proposed, being solved in terms of linear matrix inequalities and search on a scalar parameter confined in the range (1, 1). All classes of controllers can present gains with arbitrary degree polynomial dependence on the LPV parameters, in general providing less conservative results as the degrees increase. In order to validate the contributions of this thesis, the proposed modeling and control techniques are applied in some mechatronic systems, considering simulations and practical experiments.Esta tese propõe contribuições para modelagem e controle de uma classe de sistemas não lineares utilizando modelos lineares a parâmetros variantes (do inglês, Linear Parameter-Varying LPV). Como primeira contribuição, são propostas duas técnicas de modelagem especializadas na geração de modelos LPV com dependência polinomial nos parâmetros (denominados parâmetros LPV). Caso os parâmetros estejam relacionados com os estados ou entradas, o modelo é chamado de quasi-LPV. A primeira técnica, baseada na expansão em série de Taylor, produz um modelo mais acurado em torno de um ponto de operação quando comparada com as técnicas clássicas de linearização. A segunda abordagem é baseada em um algoritmo de interpolação polinomial e produz uma família de modelos lineares dentro de uma faixa de operação pré-estabelecida, sendo especialmente adequada para lidar com problemas de seguimento de trajetória. A segunda contribuição da tese ´e um conjunto de condições para controle escalonado de sistemas LPV ou quasi-LPV. São propostas condições de estabilização, controle H2 e H por realimentação de estados e de saída (estática e dinâmica de ordem completa), que são resolvidas por meio de desigualdade matriciais lineares e busca em um parâmetro escalar confinado no intervalo (1, 1). Todas as classes de controladores podem ter ganhos com dependência polinomial de grau arbitrário nos parâmetros LPV, em geral fornecendo resultados menos conservadores `a medida que os graus aumentam. Com vistas a validar as contribuições desta tese, as técnicas de modelagem e controle propostas são aplicadas em alguns sistemas mecatrônicos, considerando simulações e experimentos físicos.Biblioteca Digitais de Teses e Dissertações da USPAngelico, Bruno AugustoNeves, Gabriel Pereira das2021-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3139/tde-08062022-080239/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-06-08T13:06:17Zoai:teses.usp.br:tde-08062022-080239Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-06-08T13:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. Contribuições para modelagem LPV e controle por ganho escalonado aplicados em sistemas mecatrônicos. |
title |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. |
spellingShingle |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. Neves, Gabriel Pereira das Controle (Teoria de sistemas e controle) Dynamic output-feedback controller Gain-scheduled H infinite norm H2 norm LMI LPV modeling Modelos não lineares Quasi-LPV Sistemas dinâmicos State-feedback controller Static output-feedback controller |
title_short |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. |
title_full |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. |
title_fullStr |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. |
title_full_unstemmed |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. |
title_sort |
Contributions to LPV modeling and gain-scheduled control applied to mechatronic systems. |
author |
Neves, Gabriel Pereira das |
author_facet |
Neves, Gabriel Pereira das |
author_role |
author |
dc.contributor.none.fl_str_mv |
Angelico, Bruno Augusto |
dc.contributor.author.fl_str_mv |
Neves, Gabriel Pereira das |
dc.subject.por.fl_str_mv |
Controle (Teoria de sistemas e controle) Dynamic output-feedback controller Gain-scheduled H infinite norm H2 norm LMI LPV modeling Modelos não lineares Quasi-LPV Sistemas dinâmicos State-feedback controller Static output-feedback controller |
topic |
Controle (Teoria de sistemas e controle) Dynamic output-feedback controller Gain-scheduled H infinite norm H2 norm LMI LPV modeling Modelos não lineares Quasi-LPV Sistemas dinâmicos State-feedback controller Static output-feedback controller |
description |
This thesis proposes contributions for modeling and control of a class of nonlinear systems using linear parameter-varying (LPV) models. As a first contribution, two modeling techniques specialized in the generation of LPV models with polynomial dependence on the parameters (called LPV parameters) are proposed. If the parameters are related to states or inputs, the model is called quasi-LPV. The first technique, based on Taylor series expansion, produces a more accurate model around an operating point when compared to classical linearization techniques. The second approach is based on a polynomial interpolation algorithm and yields a family of linear models within a pre-established operating range, being especially suitable for dealing with reference tracking problems. The second contribution of the thesis is a set of conditions for gain-scheduled control of LPV or quasi-LPV systems. Stabilization, H2 and H control design conditions by state and output feedback static and full-order dynamic are proposed, being solved in terms of linear matrix inequalities and search on a scalar parameter confined in the range (1, 1). All classes of controllers can present gains with arbitrary degree polynomial dependence on the LPV parameters, in general providing less conservative results as the degrees increase. In order to validate the contributions of this thesis, the proposed modeling and control techniques are applied in some mechatronic systems, considering simulations and practical experiments. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3139/tde-08062022-080239/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3139/tde-08062022-080239/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256804174594048 |