Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética

Detalhes bibliográficos
Autor(a) principal: Menezes, Leon Paixão
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-07032018-095408/
Resumo: Existe hoje uma grande diversidade de técnicas modernas na física médica que são fundamentadas na tecnologia de ressonância magnética nuclear. Dentre estas, a espectroscopia por ressonância magnética é utilizada para medir a concentração de determinados metabólitos no paciente, permitindo o diagnóstico de doenças através de anormalidades no resultado. Dadas as limitações experimentais para melhorar a aquisição do sinal, seja na parte instrumental ou ainda pela necessidade de minimizar o tempo total dos exames, a utilização de técnicas de processamento de sinais apresenta soluções para a melhor visualização e manipulação do sinal estudado. Dentre estas, está o uso de filtros para atenuar os impactos do ruído nos dados amostrados. Recentemente, diversas áreas que necessitam de processamento de sinais têm explorado implementações de filtros que utilizam a transformada wavelet, apresentando resultados promissores com esta nova abordagem. Partindo de estudos prévios na área de espectroscopia por ressonância magnética, implementamos neste trabalho filtros com transformada wavelet, utilizando a metodologia Wavelet Shrinkage Denoising (WSD). A etapa de maior importância deste procedimento é o cálculo do limiar, isto é, o valor a partir do qual os coeficientes devem ser considerados uma representação de ruído (e portanto atenuados); além do método descrito anteriormente na literatura, foram desenvolvidas neste trabalho outras duas novas formas para este cálculo, totalizando três filtros. O primeiro método utiliza a estimativa de risco não-enviesada de Stein (SURE), o segundo uma estimativa do desvio padrão característico do ruído, calculado em uma porção sem picos do espectro, e o terceiro, por fim, introduz informação do sinal à etapa de limiarização, utilizando um procedimento de fitting para estimar regiões do espectro a serem preservadas. A performance destes filtros foi comparada entre si, e também com um método de referência utilizando a transformada de Fourier, primeiro em sinais simulados, e em seguida em sinais in vivo experimentais. Os resultados apresentam uma grande melhora na performance anteriormente documentada, com proposições de novas formas de explorar o potencial de filtros baseados em transformada wavelet.
id USP_1c598536cd375c96c67dd3bacd5f4523
oai_identifier_str oai:teses.usp.br:tde-07032018-095408
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância MagnéticaDevelopment of wavelet transform based filters for magnetic resonance spectroscopyDigital signal processingEspectroscopia por ressonância magnéticaMagnetic resonance spectroscopyProcessamento de sinais digitaisTransformada WaveletWavelet transformExiste hoje uma grande diversidade de técnicas modernas na física médica que são fundamentadas na tecnologia de ressonância magnética nuclear. Dentre estas, a espectroscopia por ressonância magnética é utilizada para medir a concentração de determinados metabólitos no paciente, permitindo o diagnóstico de doenças através de anormalidades no resultado. Dadas as limitações experimentais para melhorar a aquisição do sinal, seja na parte instrumental ou ainda pela necessidade de minimizar o tempo total dos exames, a utilização de técnicas de processamento de sinais apresenta soluções para a melhor visualização e manipulação do sinal estudado. Dentre estas, está o uso de filtros para atenuar os impactos do ruído nos dados amostrados. Recentemente, diversas áreas que necessitam de processamento de sinais têm explorado implementações de filtros que utilizam a transformada wavelet, apresentando resultados promissores com esta nova abordagem. Partindo de estudos prévios na área de espectroscopia por ressonância magnética, implementamos neste trabalho filtros com transformada wavelet, utilizando a metodologia Wavelet Shrinkage Denoising (WSD). A etapa de maior importância deste procedimento é o cálculo do limiar, isto é, o valor a partir do qual os coeficientes devem ser considerados uma representação de ruído (e portanto atenuados); além do método descrito anteriormente na literatura, foram desenvolvidas neste trabalho outras duas novas formas para este cálculo, totalizando três filtros. O primeiro método utiliza a estimativa de risco não-enviesada de Stein (SURE), o segundo uma estimativa do desvio padrão característico do ruído, calculado em uma porção sem picos do espectro, e o terceiro, por fim, introduz informação do sinal à etapa de limiarização, utilizando um procedimento de fitting para estimar regiões do espectro a serem preservadas. A performance destes filtros foi comparada entre si, e também com um método de referência utilizando a transformada de Fourier, primeiro em sinais simulados, e em seguida em sinais in vivo experimentais. Os resultados apresentam uma grande melhora na performance anteriormente documentada, com proposições de novas formas de explorar o potencial de filtros baseados em transformada wavelet.Many of today techniques in medical physics are based on nuclear magnetic resonance technology. Among these, magnetic resonance spectroscopy is used to measure the concentration of certain metabolites in the patient, allowing the diagnosis of diseases through abnormalities in the results. Given the experimental limitations to improve the quality of the acquired signal, either by instrumental methods or due to the need to minimize the total time elapsed on exams, employing signal processing techniques presents solutions for best visualization and manipulation of the studied signal. Among these, there is the development of filters to mitigate the impacts of noise on the sampled data. Recently, several areas that require signal processing have explored filter implementations that use the wavelet transform, presenting promising results with this new approach. Based on previous studies in the area of magnetic resonance spectroscopy, we implemented wavelet transform filters using the Wavelet Shrinkage Denoising (WSD) methodology. A crucial step in this procedure is the calculation of the threshold, as this value establishes which coefficients are to be considered a noise representation (and therefore attenuated); in addition to the method described previously in the literature, two other new proceedures were developed in this work, totaling three filters. The first method uses the Stein unbiased risk estimator (SURE), the second an estimate of the characteristic standard deviation of the noise, calculated in a portion without peaks of the spectrum, and the third, finally, inputs information from the signal at the thresholding using a fitting procedure to estimate regions of the spectrum that must be preserved. The performance of these filters was compared between each other, and also to a reference method using the Fourier transform, first on simulated signals, and then on experimental in vivo signals. Results show a great improvement compared to performance previously documented, bringing new ways to explore the potential of filters based on wavelet transform.Biblioteca Digitais de Teses e Dissertações da USPPaiva, Fernando FernandesMenezes, Leon Paixão2017-11-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-07032018-095408/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-07032018-095408Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
Development of wavelet transform based filters for magnetic resonance spectroscopy
title Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
spellingShingle Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
Menezes, Leon Paixão
Digital signal processing
Espectroscopia por ressonância magnética
Magnetic resonance spectroscopy
Processamento de sinais digitais
Transformada Wavelet
Wavelet transform
title_short Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
title_full Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
title_fullStr Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
title_full_unstemmed Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
title_sort Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética
author Menezes, Leon Paixão
author_facet Menezes, Leon Paixão
author_role author
dc.contributor.none.fl_str_mv Paiva, Fernando Fernandes
dc.contributor.author.fl_str_mv Menezes, Leon Paixão
dc.subject.por.fl_str_mv Digital signal processing
Espectroscopia por ressonância magnética
Magnetic resonance spectroscopy
Processamento de sinais digitais
Transformada Wavelet
Wavelet transform
topic Digital signal processing
Espectroscopia por ressonância magnética
Magnetic resonance spectroscopy
Processamento de sinais digitais
Transformada Wavelet
Wavelet transform
description Existe hoje uma grande diversidade de técnicas modernas na física médica que são fundamentadas na tecnologia de ressonância magnética nuclear. Dentre estas, a espectroscopia por ressonância magnética é utilizada para medir a concentração de determinados metabólitos no paciente, permitindo o diagnóstico de doenças através de anormalidades no resultado. Dadas as limitações experimentais para melhorar a aquisição do sinal, seja na parte instrumental ou ainda pela necessidade de minimizar o tempo total dos exames, a utilização de técnicas de processamento de sinais apresenta soluções para a melhor visualização e manipulação do sinal estudado. Dentre estas, está o uso de filtros para atenuar os impactos do ruído nos dados amostrados. Recentemente, diversas áreas que necessitam de processamento de sinais têm explorado implementações de filtros que utilizam a transformada wavelet, apresentando resultados promissores com esta nova abordagem. Partindo de estudos prévios na área de espectroscopia por ressonância magnética, implementamos neste trabalho filtros com transformada wavelet, utilizando a metodologia Wavelet Shrinkage Denoising (WSD). A etapa de maior importância deste procedimento é o cálculo do limiar, isto é, o valor a partir do qual os coeficientes devem ser considerados uma representação de ruído (e portanto atenuados); além do método descrito anteriormente na literatura, foram desenvolvidas neste trabalho outras duas novas formas para este cálculo, totalizando três filtros. O primeiro método utiliza a estimativa de risco não-enviesada de Stein (SURE), o segundo uma estimativa do desvio padrão característico do ruído, calculado em uma porção sem picos do espectro, e o terceiro, por fim, introduz informação do sinal à etapa de limiarização, utilizando um procedimento de fitting para estimar regiões do espectro a serem preservadas. A performance destes filtros foi comparada entre si, e também com um método de referência utilizando a transformada de Fourier, primeiro em sinais simulados, e em seguida em sinais in vivo experimentais. Os resultados apresentam uma grande melhora na performance anteriormente documentada, com proposições de novas formas de explorar o potencial de filtros baseados em transformada wavelet.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-07032018-095408/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-07032018-095408/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256778203463680