Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo

Detalhes bibliográficos
Autor(a) principal: Guazzelli, Paulo Roberto Ubaldo
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-23032017-094031/
Resumo: Neste trabalho investiga-se a aplicação de um algoritmo genético multiobjetivo, ferramenta que se destaca por sua flexibilidade e interpretabilidade, na obtenção de fatores de ponderação para aplicação no controle preditivo de torque do motor de indução, ou Model Predictive Torque Control (MPTC). O MPTC busca minimizar a cada instante de atuação uma função custo que representa o sistema, destacando-se pela rápida resposta de torque, facilidade de incorporar restrições e ausência de modulador de tensão. No entanto, essa técnica apresenta fatores de ponderação em sua estrutura de cálculo que não dispõem de métodos analíticos de projeto. Utilizou-se o algoritmo genético de classificação nãodominada, ou Non-dominated Sorting Genectic Algorithm II (NSGA-II), projetado de forma a obter soluções que busquem o compromisso entre o desempenho dinâmico do motor, via minimização das oscilações de torque e fluxo, e a eficiência energética do sistema por meio da minimização da frequência média de chaveamento da eletrônica de potência. Resultados simulados e experimentais mostraram que o conjunto de soluções fornecido pelo NSGA-II é factível e contrapõe as oscilações de torque e de fluxo e a frequência média de chaveamento, cabendo à aplicação desejada a escolha da solução. Com isso, tem-se uma ferramenta de projeto dos fatores de peso do MPTC capaz de incorporar restrições e ajustar vários fatores ao mesmo tempo.
id USP_1c7ea354a0686004a174ab4ec384b3cb
oai_identifier_str oai:teses.usp.br:tde-23032017-094031
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivoMulti-objective genetic algorithm optimization of predictive torque control weighting factors for induction motor drivesAlgoritmo genético multiobjetivoControle preditivo de torqueFatores de ponderaçãoGenetic algorithmInduction motorMotor de induçãoMulti-objective optimizationPredictive controlNeste trabalho investiga-se a aplicação de um algoritmo genético multiobjetivo, ferramenta que se destaca por sua flexibilidade e interpretabilidade, na obtenção de fatores de ponderação para aplicação no controle preditivo de torque do motor de indução, ou Model Predictive Torque Control (MPTC). O MPTC busca minimizar a cada instante de atuação uma função custo que representa o sistema, destacando-se pela rápida resposta de torque, facilidade de incorporar restrições e ausência de modulador de tensão. No entanto, essa técnica apresenta fatores de ponderação em sua estrutura de cálculo que não dispõem de métodos analíticos de projeto. Utilizou-se o algoritmo genético de classificação nãodominada, ou Non-dominated Sorting Genectic Algorithm II (NSGA-II), projetado de forma a obter soluções que busquem o compromisso entre o desempenho dinâmico do motor, via minimização das oscilações de torque e fluxo, e a eficiência energética do sistema por meio da minimização da frequência média de chaveamento da eletrônica de potência. Resultados simulados e experimentais mostraram que o conjunto de soluções fornecido pelo NSGA-II é factível e contrapõe as oscilações de torque e de fluxo e a frequência média de chaveamento, cabendo à aplicação desejada a escolha da solução. Com isso, tem-se uma ferramenta de projeto dos fatores de peso do MPTC capaz de incorporar restrições e ajustar vários fatores ao mesmo tempo.This work investigates the application of a multi-objective genetic algorithm to obtain a set of weighting factors suitable for use in Model Predictive Torque Control (MPTC) of a induction motor variable speed drive. MPTC approach aims at minimizing a cost function at each step, and is highlighted for its fast torque response, facility to incorporate system constraints and the absence of voltage modulators. Nevertheless, MPTC structure presents weighting factors in the cost function which lack of an analytical design procedure. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was designed for a trade-off between torque and flux ripples minimization and minimization of the average switching frequency of the system. Simulated and experimental results showed NSGA-II offered a Pareto set of feasible solutions, so that torque ripple, flux ripple or average switching frequency can be minimized, depending on the solution chosen according to project demand. Thereby, there is a project tool for MPTC weighting factors able to adjust several factor at the same time, incorporating desired restrictions.Biblioteca Digitais de Teses e Dissertações da USPAguiar, Manoel Luís deGuazzelli, Paulo Roberto Ubaldo2017-02-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18153/tde-23032017-094031/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-23032017-094031Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
Multi-objective genetic algorithm optimization of predictive torque control weighting factors for induction motor drives
title Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
spellingShingle Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
Guazzelli, Paulo Roberto Ubaldo
Algoritmo genético multiobjetivo
Controle preditivo de torque
Fatores de ponderação
Genetic algorithm
Induction motor
Motor de indução
Multi-objective optimization
Predictive control
title_short Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
title_full Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
title_fullStr Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
title_full_unstemmed Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
title_sort Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo
author Guazzelli, Paulo Roberto Ubaldo
author_facet Guazzelli, Paulo Roberto Ubaldo
author_role author
dc.contributor.none.fl_str_mv Aguiar, Manoel Luís de
dc.contributor.author.fl_str_mv Guazzelli, Paulo Roberto Ubaldo
dc.subject.por.fl_str_mv Algoritmo genético multiobjetivo
Controle preditivo de torque
Fatores de ponderação
Genetic algorithm
Induction motor
Motor de indução
Multi-objective optimization
Predictive control
topic Algoritmo genético multiobjetivo
Controle preditivo de torque
Fatores de ponderação
Genetic algorithm
Induction motor
Motor de indução
Multi-objective optimization
Predictive control
description Neste trabalho investiga-se a aplicação de um algoritmo genético multiobjetivo, ferramenta que se destaca por sua flexibilidade e interpretabilidade, na obtenção de fatores de ponderação para aplicação no controle preditivo de torque do motor de indução, ou Model Predictive Torque Control (MPTC). O MPTC busca minimizar a cada instante de atuação uma função custo que representa o sistema, destacando-se pela rápida resposta de torque, facilidade de incorporar restrições e ausência de modulador de tensão. No entanto, essa técnica apresenta fatores de ponderação em sua estrutura de cálculo que não dispõem de métodos analíticos de projeto. Utilizou-se o algoritmo genético de classificação nãodominada, ou Non-dominated Sorting Genectic Algorithm II (NSGA-II), projetado de forma a obter soluções que busquem o compromisso entre o desempenho dinâmico do motor, via minimização das oscilações de torque e fluxo, e a eficiência energética do sistema por meio da minimização da frequência média de chaveamento da eletrônica de potência. Resultados simulados e experimentais mostraram que o conjunto de soluções fornecido pelo NSGA-II é factível e contrapõe as oscilações de torque e de fluxo e a frequência média de chaveamento, cabendo à aplicação desejada a escolha da solução. Com isso, tem-se uma ferramenta de projeto dos fatores de peso do MPTC capaz de incorporar restrições e ajustar vários fatores ao mesmo tempo.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18153/tde-23032017-094031/
url http://www.teses.usp.br/teses/disponiveis/18/18153/tde-23032017-094031/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257295445032960