Imbalanced classification tasks: measuring data complexity and recommending techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042021-140437/ |
Resumo: | Machine learning classification algorithms tend to perform poorly in datasets with class imbalance. Class imbalance is not a problem per se, but it poses adverse effects when combined with other data characteristics, such as class overlap and noise. This study aims to measure data characteristics in imbalanced datasets and recommend techniques to deal with class imbalance in a meta-learning system. Popular data complexity measures were decomposed per class to better assess the imbalanced datasets characteristics. They were applied to controlled artificial datasets and to real datasets. These measures were correlated with several classification models predictive performance. The measures were also evaluated before and after applying popular pre-processing techniques for imbalanced datasets. Moreover, a meta-learning system was implemented using popular meta-features along with the data complexity measures developed in this research. The results showed that decomposing the data complexity measures per class improved their ability to measure complexity in imbalanced datasets. Furthermore, according to experimental results, they were the most important meta-features in the meta-learning system. Based on the results, data science practitioners should consider measuring the data complexity of imbalanced datasets, whether it is to interpret the data characteristics, select techniques, or develop new techniques. |
id |
USP_1ce25dfb785e34c9ba15f3e92136cabf |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26042021-140437 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Imbalanced classification tasks: measuring data complexity and recommending techniquesTarefas de classificação desbalanceadas: medindo complexidade de dados e recomendando técnicasAprendizado de máquinaDados desbalanceadosData complexityImbalanced datasetsMachine learningMeta- aprendizadoMeta- learningMeta-atributosMeta-featuresMachine learning classification algorithms tend to perform poorly in datasets with class imbalance. Class imbalance is not a problem per se, but it poses adverse effects when combined with other data characteristics, such as class overlap and noise. This study aims to measure data characteristics in imbalanced datasets and recommend techniques to deal with class imbalance in a meta-learning system. Popular data complexity measures were decomposed per class to better assess the imbalanced datasets characteristics. They were applied to controlled artificial datasets and to real datasets. These measures were correlated with several classification models predictive performance. The measures were also evaluated before and after applying popular pre-processing techniques for imbalanced datasets. Moreover, a meta-learning system was implemented using popular meta-features along with the data complexity measures developed in this research. The results showed that decomposing the data complexity measures per class improved their ability to measure complexity in imbalanced datasets. Furthermore, according to experimental results, they were the most important meta-features in the meta-learning system. Based on the results, data science practitioners should consider measuring the data complexity of imbalanced datasets, whether it is to interpret the data characteristics, select techniques, or develop new techniques.Algoritmos de classificação em aprendizado de máquina tendem a desempenhar pior em dados com classes desbalanceadas. Desbalanceamento de classes não é um problema sozinho, mas provoca efeitos adversos quando combinado com outras características de dados, como sobreposição de classes e ruído. Este estudo tem por objetivo medir características de dados desbalanceados e recomendar técnicas para lidar com desbalanceamento por meio de um sistema de meta-aprendizado. Nesta pesquisa, medidas populares de complexidade de dados foram decompostas por classe para melhor aferir as características de dados desbalanceados. Elas foram aplicadas em conjuntos de dados artificiais controlados e conjuntos reais. Essas medidas foram correlacionadas com o desempenho preditivo de diversos modelos de classificação. Elas também foram avaliadas antes e após a aplicação de famosas técnicas de pré-processamento pra dados desbalanceados. Além disso, um sistem de meta-prendizado foi implementado usando meta-atributos populares na literatura juntamente com as medidas de complexidade de dados desenvolvidas nessa pesquisa. Os resultados mostraram que decompor as medidas de complexidade por classe melhorou sua habilidade em medir complexidade em dados desbalanceados. Ademais, de acordo com os resultados dos experimentos, elas foram os meta-atributos mais relevantes para o sistema de meta-aprendizado. Baseado nos resultados desta pesquisa, praticantes de ciência de dados devem considerar medir a complexidade de conjuntos de dados desbalanceados, seja para interpretar características de dados, selecionar técnicas ou desenvolver novas técnicas.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deBarella, Victor Hugo2021-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042021-140437/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-04-26T20:12:02Zoai:teses.usp.br:tde-26042021-140437Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-26T20:12:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Imbalanced classification tasks: measuring data complexity and recommending techniques Tarefas de classificação desbalanceadas: medindo complexidade de dados e recomendando técnicas |
title |
Imbalanced classification tasks: measuring data complexity and recommending techniques |
spellingShingle |
Imbalanced classification tasks: measuring data complexity and recommending techniques Barella, Victor Hugo Aprendizado de máquina Dados desbalanceados Data complexity Imbalanced datasets Machine learning Meta- aprendizado Meta- learning Meta-atributos Meta-features |
title_short |
Imbalanced classification tasks: measuring data complexity and recommending techniques |
title_full |
Imbalanced classification tasks: measuring data complexity and recommending techniques |
title_fullStr |
Imbalanced classification tasks: measuring data complexity and recommending techniques |
title_full_unstemmed |
Imbalanced classification tasks: measuring data complexity and recommending techniques |
title_sort |
Imbalanced classification tasks: measuring data complexity and recommending techniques |
author |
Barella, Victor Hugo |
author_facet |
Barella, Victor Hugo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carvalho, André Carlos Ponce de Leon Ferreira de |
dc.contributor.author.fl_str_mv |
Barella, Victor Hugo |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Dados desbalanceados Data complexity Imbalanced datasets Machine learning Meta- aprendizado Meta- learning Meta-atributos Meta-features |
topic |
Aprendizado de máquina Dados desbalanceados Data complexity Imbalanced datasets Machine learning Meta- aprendizado Meta- learning Meta-atributos Meta-features |
description |
Machine learning classification algorithms tend to perform poorly in datasets with class imbalance. Class imbalance is not a problem per se, but it poses adverse effects when combined with other data characteristics, such as class overlap and noise. This study aims to measure data characteristics in imbalanced datasets and recommend techniques to deal with class imbalance in a meta-learning system. Popular data complexity measures were decomposed per class to better assess the imbalanced datasets characteristics. They were applied to controlled artificial datasets and to real datasets. These measures were correlated with several classification models predictive performance. The measures were also evaluated before and after applying popular pre-processing techniques for imbalanced datasets. Moreover, a meta-learning system was implemented using popular meta-features along with the data complexity measures developed in this research. The results showed that decomposing the data complexity measures per class improved their ability to measure complexity in imbalanced datasets. Furthermore, according to experimental results, they were the most important meta-features in the meta-learning system. Based on the results, data science practitioners should consider measuring the data complexity of imbalanced datasets, whether it is to interpret the data characteristics, select techniques, or develop new techniques. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042021-140437/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042021-140437/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257357140099072 |