Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs

Detalhes bibliográficos
Autor(a) principal: Matias, Paulo
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-01042016-144148/
Resumo: Peixes elétricos de campo fraco comunicam-se por meio de descargas elétricas de forma de onda estereotipada, variando somente o intervalo entre pulsos de acordo com a informação a ser transmitida. Esse mecanismo de codificação é similar ao encontrado em diversos circuitos de neurônios conhecidos, o que torna esses animais excelentes modelos para o estudo de sistemas de comunicação naturais, permitindo experimentos que envolvem tanto aspectos comportamentais como neuroetológicos. É um desafio realizar análises de dados coletados de mais de um peixe nadando livremente, pois os padrões de descargas de órgão elétrico (DOE) dependem da posição dos animais e de suas orientações com relação aos eletrodos de medida. Contudo, como cada peixe emite uma forma de onda de DOE característica, ferramentas computacionais podem ser empregadas para associar cada DOE ao respectivo peixe. Neste trabalho, descrevemos um método computacional capaz de reconhecer DOEs de pares de peixes usando vetores de características normalizados, obtidos aplicando a transformada de Fourier e a transformada complexa de dupla árvore de pacote wavelet. Empregamos máquinas de vetores de suporte como classificadores, e um algoritmo de regra de continuidade permite resolver problemas causados por DOEs sobrepostas e saturação de sinais. Procedimentos de validação com Gymnotus sp. mostraram que as DOEs podem ser atribuídas corretamente a cada peixe com apenas dois erros por milhão de descargas. Para permitir que esse processo de discriminação ocorra em tempo real, implementamos uma arquitetura de hardware dedicada e maciçamente paralela em um field programmable gate array (FPGA) para executar a etapa de maior esforço computacional do algoritmo de discriminação. Como resultado, obtivemos um sistema híbrido de hardware e software de tempo real que foi capaz de atender a um requisito de latência máxima de 1 ms, o que permite mimetizar o tempo de resposta de importantes sistemas sensoriais elétricos de Gymnotus sp. Com o auxílio de nossa instrumentação, diversos experimentos com realimentação poderão ser propostos, permitindo que um modelo computacional interaja com dois peixes em uma preparação in vivo naturalística.
id USP_1cfeebf52fba916e54a70f4c47466faf
oai_identifier_str oai:teses.usp.br:tde-01042016-144148
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAsReal-time discrimination of pulse-type electric fish signals using FPGAsElectronic instrumentationFPGAFPGAInstrumentação eletrônicaNeurobiofísicaNeurobiophysicsPeixes elétricos pulsadoresPulse-type electric fishReal-timeTempo realPeixes elétricos de campo fraco comunicam-se por meio de descargas elétricas de forma de onda estereotipada, variando somente o intervalo entre pulsos de acordo com a informação a ser transmitida. Esse mecanismo de codificação é similar ao encontrado em diversos circuitos de neurônios conhecidos, o que torna esses animais excelentes modelos para o estudo de sistemas de comunicação naturais, permitindo experimentos que envolvem tanto aspectos comportamentais como neuroetológicos. É um desafio realizar análises de dados coletados de mais de um peixe nadando livremente, pois os padrões de descargas de órgão elétrico (DOE) dependem da posição dos animais e de suas orientações com relação aos eletrodos de medida. Contudo, como cada peixe emite uma forma de onda de DOE característica, ferramentas computacionais podem ser empregadas para associar cada DOE ao respectivo peixe. Neste trabalho, descrevemos um método computacional capaz de reconhecer DOEs de pares de peixes usando vetores de características normalizados, obtidos aplicando a transformada de Fourier e a transformada complexa de dupla árvore de pacote wavelet. Empregamos máquinas de vetores de suporte como classificadores, e um algoritmo de regra de continuidade permite resolver problemas causados por DOEs sobrepostas e saturação de sinais. Procedimentos de validação com Gymnotus sp. mostraram que as DOEs podem ser atribuídas corretamente a cada peixe com apenas dois erros por milhão de descargas. Para permitir que esse processo de discriminação ocorra em tempo real, implementamos uma arquitetura de hardware dedicada e maciçamente paralela em um field programmable gate array (FPGA) para executar a etapa de maior esforço computacional do algoritmo de discriminação. Como resultado, obtivemos um sistema híbrido de hardware e software de tempo real que foi capaz de atender a um requisito de latência máxima de 1 ms, o que permite mimetizar o tempo de resposta de importantes sistemas sensoriais elétricos de Gymnotus sp. Com o auxílio de nossa instrumentação, diversos experimentos com realimentação poderão ser propostos, permitindo que um modelo computacional interaja com dois peixes em uma preparação in vivo naturalística.Pulse-type weakly electric fishes communicate through electrical discharges with a stereotyped waveform, varying solely the interval between pulses according to the information being transmitted. This simple codification mechanism is similar to the one found in various known neuronal circuits, which renders these animals as good models for the study of natural communication systems, allowing experiments involving behavioral and neuroethological aspects. Performing analysis of data collected from more than one freely swimming fish is a challenge since the detected electric organ discharge (EOD) patterns are dependent on each animal´s position and orientation relative to the electrodes. However, since each fish emits a characteristic EOD waveform, computational tools can be employed to match each EOD to the respective fish. In this work we describe a computational method able to recognize fish EODs from dyads using normalized feature vectors obtained by applying Fourier and dual-tree complex wavelet packet transforms. We employ support vector machines as classifiers, and a continuity constraint algorithm allows us to solve issues caused by overlapping EODs and signal saturation. Validation procedures with Gymnotus sp. showed that EODs can be assigned correctly to each fish with only two errors per million discharges. In order to allow this discrimination process to occur in real-time, we implemented a massively parallel application-specific hardware architecture in a field programmable gate array (FPGA) to run the discrimination algorithm step whose computational effort is the highest among the others. As a result, we obtained a hardware and real-time software co-design that was able to meet a maximum latency requirement of 1 ms, allowing it to mimic the response time of major electrical sensory systems of Gymnotus sp. Our instrumentation will enable the proposal of several novel experiments with closed-loop feedback, allowing a computer model to interact with two fish in a naturalistic in vivo preparation.Biblioteca Digitais de Teses e Dissertações da USPSlaets, Jan Frans WillemMatias, Paulo2016-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-01042016-144148/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-01042016-144148Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
Real-time discrimination of pulse-type electric fish signals using FPGAs
title Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
spellingShingle Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
Matias, Paulo
Electronic instrumentation
FPGA
FPGA
Instrumentação eletrônica
Neurobiofísica
Neurobiophysics
Peixes elétricos pulsadores
Pulse-type electric fish
Real-time
Tempo real
title_short Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
title_full Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
title_fullStr Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
title_full_unstemmed Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
title_sort Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs
author Matias, Paulo
author_facet Matias, Paulo
author_role author
dc.contributor.none.fl_str_mv Slaets, Jan Frans Willem
dc.contributor.author.fl_str_mv Matias, Paulo
dc.subject.por.fl_str_mv Electronic instrumentation
FPGA
FPGA
Instrumentação eletrônica
Neurobiofísica
Neurobiophysics
Peixes elétricos pulsadores
Pulse-type electric fish
Real-time
Tempo real
topic Electronic instrumentation
FPGA
FPGA
Instrumentação eletrônica
Neurobiofísica
Neurobiophysics
Peixes elétricos pulsadores
Pulse-type electric fish
Real-time
Tempo real
description Peixes elétricos de campo fraco comunicam-se por meio de descargas elétricas de forma de onda estereotipada, variando somente o intervalo entre pulsos de acordo com a informação a ser transmitida. Esse mecanismo de codificação é similar ao encontrado em diversos circuitos de neurônios conhecidos, o que torna esses animais excelentes modelos para o estudo de sistemas de comunicação naturais, permitindo experimentos que envolvem tanto aspectos comportamentais como neuroetológicos. É um desafio realizar análises de dados coletados de mais de um peixe nadando livremente, pois os padrões de descargas de órgão elétrico (DOE) dependem da posição dos animais e de suas orientações com relação aos eletrodos de medida. Contudo, como cada peixe emite uma forma de onda de DOE característica, ferramentas computacionais podem ser empregadas para associar cada DOE ao respectivo peixe. Neste trabalho, descrevemos um método computacional capaz de reconhecer DOEs de pares de peixes usando vetores de características normalizados, obtidos aplicando a transformada de Fourier e a transformada complexa de dupla árvore de pacote wavelet. Empregamos máquinas de vetores de suporte como classificadores, e um algoritmo de regra de continuidade permite resolver problemas causados por DOEs sobrepostas e saturação de sinais. Procedimentos de validação com Gymnotus sp. mostraram que as DOEs podem ser atribuídas corretamente a cada peixe com apenas dois erros por milhão de descargas. Para permitir que esse processo de discriminação ocorra em tempo real, implementamos uma arquitetura de hardware dedicada e maciçamente paralela em um field programmable gate array (FPGA) para executar a etapa de maior esforço computacional do algoritmo de discriminação. Como resultado, obtivemos um sistema híbrido de hardware e software de tempo real que foi capaz de atender a um requisito de latência máxima de 1 ms, o que permite mimetizar o tempo de resposta de importantes sistemas sensoriais elétricos de Gymnotus sp. Com o auxílio de nossa instrumentação, diversos experimentos com realimentação poderão ser propostos, permitindo que um modelo computacional interaja com dois peixes em uma preparação in vivo naturalística.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-01042016-144148/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-01042016-144148/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256575246336000