Monitoramento de séries de contagem por meio de gráficos de controle

Detalhes bibliográficos
Autor(a) principal: Esparza Albarracin, Orlando Yesid
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-20052014-202803/
Resumo: Na área da saúde, várias abordagens nos últimos anos têm sido propostas baseadas nos gráficos de controle CUSUM para a detecção de epidemias infecciosas em que a caraterística a ser monitorada é uma série temporal de dados de contagem, como o número de internações. Neste trabalho foram implementados os modelos lineares generalizados (MLG) no monitoramento, por meio dos gráficos CUSUM e Shewhart, da série do número diário de internações por causas respiratórias para pessoas com 65 anos ou mais residentes no município de São Paulo. Por meio de simulações, avaliaram-se a eficiência de cinco estatísticas diferentes para detectar mudanças na média em séries de contagem. Uma das abordagens consistiu na implementação de três transformações normalizadoras simples que dependem unicamente dos parâmetros das distribuições Poisson e binomial negativa: a transformação Rossi para dados com distribuição Poisson, a transformação Jorgensen para dados com distribuição binomial negativa e os sesíduos de Anscombe para modelos lineares generalizados. As duas últimas estatísticas já foram propostas como gráficos CUSUM: o Método Rogerson e Yamada (2004) é apresentado para dados com distribuição Poisson e neste trabalho foi proposto um novo parâmetro kt para dados binomial negativa; já o método proposto por Hohle (2007) é baseado na função de verossimilhança da distribuição binomial negativa. Utilizando limites de controle para obter um valor ARL0 = 500 sob normalidade, monitorou-se via simulação a série de interesse, implementando as transformações normalizadoras. Entretanto, utilizando-se esses limiares observa-se um maior número de alarmes falsos para as três estatísticas. Modificando o parâmetro k do gráfico CUSUM permitindo que variasse ao longo do tempo a série foi monitorada e foram obtidos valores ARL0 próximos a 500. Os gráficos CUSUM baseados no método Rogerson e Yamada e na estatística da razão de verossimilhanças para dados com distribuição binomial negativa mostraram, via simulação, bons resultados para detectar mudanças na média. As suposições de normalidade e independência das estatísticas normalizadoras, em geral omitidas em trabalhos publicados na literatura, foram avaliadas e comprova-se que as transformações não normalizam os dados, porém são independentes e estacionárias. Analisando os dados reais, as estatísticas apresentaram autocorrelação significativa no lag 7. Devido à persistência desta autocorrelação, foi proposta uma abordagem baseada no ajuste do modelo GARMA.
id USP_1d923d53ead637392e55c9b63af96364
oai_identifier_str oai:teses.usp.br:tde-20052014-202803
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Monitoramento de séries de contagem por meio de gráficos de controleMonitoring time series of counts using control charts..CUSUMCUSUMséries de contagemShewhartShewharttime series of countsNa área da saúde, várias abordagens nos últimos anos têm sido propostas baseadas nos gráficos de controle CUSUM para a detecção de epidemias infecciosas em que a caraterística a ser monitorada é uma série temporal de dados de contagem, como o número de internações. Neste trabalho foram implementados os modelos lineares generalizados (MLG) no monitoramento, por meio dos gráficos CUSUM e Shewhart, da série do número diário de internações por causas respiratórias para pessoas com 65 anos ou mais residentes no município de São Paulo. Por meio de simulações, avaliaram-se a eficiência de cinco estatísticas diferentes para detectar mudanças na média em séries de contagem. Uma das abordagens consistiu na implementação de três transformações normalizadoras simples que dependem unicamente dos parâmetros das distribuições Poisson e binomial negativa: a transformação Rossi para dados com distribuição Poisson, a transformação Jorgensen para dados com distribuição binomial negativa e os sesíduos de Anscombe para modelos lineares generalizados. As duas últimas estatísticas já foram propostas como gráficos CUSUM: o Método Rogerson e Yamada (2004) é apresentado para dados com distribuição Poisson e neste trabalho foi proposto um novo parâmetro kt para dados binomial negativa; já o método proposto por Hohle (2007) é baseado na função de verossimilhança da distribuição binomial negativa. Utilizando limites de controle para obter um valor ARL0 = 500 sob normalidade, monitorou-se via simulação a série de interesse, implementando as transformações normalizadoras. Entretanto, utilizando-se esses limiares observa-se um maior número de alarmes falsos para as três estatísticas. Modificando o parâmetro k do gráfico CUSUM permitindo que variasse ao longo do tempo a série foi monitorada e foram obtidos valores ARL0 próximos a 500. Os gráficos CUSUM baseados no método Rogerson e Yamada e na estatística da razão de verossimilhanças para dados com distribuição binomial negativa mostraram, via simulação, bons resultados para detectar mudanças na média. As suposições de normalidade e independência das estatísticas normalizadoras, em geral omitidas em trabalhos publicados na literatura, foram avaliadas e comprova-se que as transformações não normalizam os dados, porém são independentes e estacionárias. Analisando os dados reais, as estatísticas apresentaram autocorrelação significativa no lag 7. Devido à persistência desta autocorrelação, foi proposta uma abordagem baseada no ajuste do modelo GARMA.In public health several approaches have been proposed for the detection of outbreaks of infectious diseases where the characteristic being monitored is a time series of count data as the number of hospitalizations, where the population and the expected rate of admissions change over time. In this work we fitted generalized linear models (GLM) and implemented Shewhart and CUSUM control charts for monitoring the daily number of hospital admissions due to respiratory diseases for people aged 65 and older in the city of São Paulo. Through simulations, we evaluated the efficiency of implementing five different statistical for detecting changes in time series of count. One approach consisted of applying three transformations that only depend on the parameters of the negative binomial and Poisson distributions: The transformations of Rossi for data with Poisson distribution, the transformation proposed by Jorgensen for data with negative binomial distribution and residuals proposed by Anscombe for generalized linear models. The other statistics have been proposed as CUSUM charts: the method of Rogerson e Yamada (2004) was presented for data with Poisson distribution, in this work we proposed a new parameter kt for negative binomial distribution, the proposed method for Hohle (2007) uses the likelihood ratio statistic. Implementing limit control assuming normality for a value of ARL0 = 500 be monitored via simulation the serie of interest implementing the normalizing statistics. However, using these limits was observed a greater number of alarms for the three transformations. Modifying the parameter k of the CUSUM chart to this change over time the series was monitored and were obtained values of ARL0 close to 500. The CUSUM control charts for the methods of Rogerson and Yamada and Holhe for data with negative binomial distribution showed, by simulation, good results for detecting changes in the mean. For negative binomial distribution generalizing the method of Rogerson e Yamada (2004) and implemented the CUSUM charts using the likelihood ratio statistic. Both methods provided good results via simulation to detect small changes in average. The evaluation of assumptions of normality for the statistics proposed by Rossi, Jorgensen and Anscombe generally is omitted in published studies. In this work, we evaluated this assumptions indicating that the statistics are not normal using the real dataset but are independent and stationary. By analyzing real data, due to the persistence of correlation for the normalized statistics, an approach based on setting GARMA model was proposed. This method showed good results once the residuals of the fitted model were normal and independent. Due to the persistence of correlation for the normalized statistics, an approach based on setting GARMA model was proposed. This method showed good results once the residuals of the fitted model were normal and independent.Biblioteca Digitais de Teses e Dissertações da USPAlencar, Airlane PereiraEsparza Albarracin, Orlando Yesid2014-03-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-20052014-202803/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T22:29:02Zoai:teses.usp.br:tde-20052014-202803Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T22:29:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Monitoramento de séries de contagem por meio de gráficos de controle
Monitoring time series of counts using control charts..
title Monitoramento de séries de contagem por meio de gráficos de controle
spellingShingle Monitoramento de séries de contagem por meio de gráficos de controle
Esparza Albarracin, Orlando Yesid
CUSUM
CUSUM
séries de contagem
Shewhart
Shewhart
time series of counts
title_short Monitoramento de séries de contagem por meio de gráficos de controle
title_full Monitoramento de séries de contagem por meio de gráficos de controle
title_fullStr Monitoramento de séries de contagem por meio de gráficos de controle
title_full_unstemmed Monitoramento de séries de contagem por meio de gráficos de controle
title_sort Monitoramento de séries de contagem por meio de gráficos de controle
author Esparza Albarracin, Orlando Yesid
author_facet Esparza Albarracin, Orlando Yesid
author_role author
dc.contributor.none.fl_str_mv Alencar, Airlane Pereira
dc.contributor.author.fl_str_mv Esparza Albarracin, Orlando Yesid
dc.subject.por.fl_str_mv CUSUM
CUSUM
séries de contagem
Shewhart
Shewhart
time series of counts
topic CUSUM
CUSUM
séries de contagem
Shewhart
Shewhart
time series of counts
description Na área da saúde, várias abordagens nos últimos anos têm sido propostas baseadas nos gráficos de controle CUSUM para a detecção de epidemias infecciosas em que a caraterística a ser monitorada é uma série temporal de dados de contagem, como o número de internações. Neste trabalho foram implementados os modelos lineares generalizados (MLG) no monitoramento, por meio dos gráficos CUSUM e Shewhart, da série do número diário de internações por causas respiratórias para pessoas com 65 anos ou mais residentes no município de São Paulo. Por meio de simulações, avaliaram-se a eficiência de cinco estatísticas diferentes para detectar mudanças na média em séries de contagem. Uma das abordagens consistiu na implementação de três transformações normalizadoras simples que dependem unicamente dos parâmetros das distribuições Poisson e binomial negativa: a transformação Rossi para dados com distribuição Poisson, a transformação Jorgensen para dados com distribuição binomial negativa e os sesíduos de Anscombe para modelos lineares generalizados. As duas últimas estatísticas já foram propostas como gráficos CUSUM: o Método Rogerson e Yamada (2004) é apresentado para dados com distribuição Poisson e neste trabalho foi proposto um novo parâmetro kt para dados binomial negativa; já o método proposto por Hohle (2007) é baseado na função de verossimilhança da distribuição binomial negativa. Utilizando limites de controle para obter um valor ARL0 = 500 sob normalidade, monitorou-se via simulação a série de interesse, implementando as transformações normalizadoras. Entretanto, utilizando-se esses limiares observa-se um maior número de alarmes falsos para as três estatísticas. Modificando o parâmetro k do gráfico CUSUM permitindo que variasse ao longo do tempo a série foi monitorada e foram obtidos valores ARL0 próximos a 500. Os gráficos CUSUM baseados no método Rogerson e Yamada e na estatística da razão de verossimilhanças para dados com distribuição binomial negativa mostraram, via simulação, bons resultados para detectar mudanças na média. As suposições de normalidade e independência das estatísticas normalizadoras, em geral omitidas em trabalhos publicados na literatura, foram avaliadas e comprova-se que as transformações não normalizam os dados, porém são independentes e estacionárias. Analisando os dados reais, as estatísticas apresentaram autocorrelação significativa no lag 7. Devido à persistência desta autocorrelação, foi proposta uma abordagem baseada no ajuste do modelo GARMA.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-20052014-202803/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-20052014-202803/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257155389882368