Localização industrial: uma aproximação usando processos pontuais espaciais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/96/96131/tde-10072018-111254/ |
Resumo: | O objetivo desta pesquisa é mostrar como aproveitar novas bases de dados disponíveis e o avanço de métodos computacionais para extrair informações estatísticas sobre a localização espacial de firmas. Para isso, propomos uma aplicação de métodos de estatística espacial para modelar o padrão de localização de novas empresas de serviços no município de São Paulo. Neste trabalho, assumimos que a localização espacial dessas firmas foi gerada através de um processo pontual bidimensional e assim aplicamos dois modelos distintos: um baseado em intensidade não estocástica baseada no processo de Poisson, e um modelo de intensidade estocástica baseado processo de Cox log Gaussiano (Log Gaussian Cox Process - LGCP). A principal base de dados utilizada é base georeferenciada baseada no Cadastro Central de Empresas construída pelo Centro de Estudos da Metrópole (CEM), contendo observações de empresas na região metropolitana de São Paulo, para o ano base de 2000. Utilizamos como variáveis explicativas de localização informações advindas de sistemas de informações geográficas (SIG), o Censo demográfico e imagens de satélite do National Oceanic and Atmospheric Administration (NOAA). Os resultados encontrados mostram a importância dessa metodologia no processo de construção de modelos de localização espacial, combinando distintas fontes de dados e introduzindo novas perspectivas sobre o estudo empírico de economia urbana. |
id |
USP_21219fa9fa74dcf0f998119b147e6367 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10072018-111254 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Localização industrial: uma aproximação usando processos pontuais espaciaisFirm location: an approach using spatial point processLocalização de firmas; São Paulo; Estatística espacial; Processo pontual de Poisson; LGCP; INLALocation of firms; São Paulo; Spatial statistics; Poisson point process; LGCP; INLAO objetivo desta pesquisa é mostrar como aproveitar novas bases de dados disponíveis e o avanço de métodos computacionais para extrair informações estatísticas sobre a localização espacial de firmas. Para isso, propomos uma aplicação de métodos de estatística espacial para modelar o padrão de localização de novas empresas de serviços no município de São Paulo. Neste trabalho, assumimos que a localização espacial dessas firmas foi gerada através de um processo pontual bidimensional e assim aplicamos dois modelos distintos: um baseado em intensidade não estocástica baseada no processo de Poisson, e um modelo de intensidade estocástica baseado processo de Cox log Gaussiano (Log Gaussian Cox Process - LGCP). A principal base de dados utilizada é base georeferenciada baseada no Cadastro Central de Empresas construída pelo Centro de Estudos da Metrópole (CEM), contendo observações de empresas na região metropolitana de São Paulo, para o ano base de 2000. Utilizamos como variáveis explicativas de localização informações advindas de sistemas de informações geográficas (SIG), o Censo demográfico e imagens de satélite do National Oceanic and Atmospheric Administration (NOAA). Os resultados encontrados mostram a importância dessa metodologia no processo de construção de modelos de localização espacial, combinando distintas fontes de dados e introduzindo novas perspectivas sobre o estudo empírico de economia urbana.The objective of this research is to show how to take advantage of new available databases and computational methods to extract statistical information about the spatial location of firms. In this sense, we propose an application of spatial statistics methods to model the location patterns of new services firms in the city of São Paulo. In this paper, we assume that the spatial location of these firms was generated through a two-dimensional point process and thus we applied two distinct models: one based on non-stochastic intensity based on the Poisson process, and a stochastic intensity model based on the Log Gaussian Cox process (LGCP). The main input used is a georeferenced database based on the Central Business Register made by the Center for Metropolis Studies (CEM), containing data of firms in the metropolitan region of São Paulo, for the base year 2000. We use as explanatory variables information from geographic information systems (GIS), demographic census and satellite imagery from National Oceanic and Atmospheric Administration (NOAA). The results show the usefulness of these models the construction of spatial location models, combining different data sources and introducing new perspectives on the empirical study of urban economics.Biblioteca Digitais de Teses e Dissertações da USPLaurini, Marcio PolettiMorales, Adriano Barasal2018-06-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/96/96131/tde-10072018-111254/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-10-03T01:45:28Zoai:teses.usp.br:tde-10072018-111254Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-10-03T01:45:28Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Localização industrial: uma aproximação usando processos pontuais espaciais Firm location: an approach using spatial point process |
title |
Localização industrial: uma aproximação usando processos pontuais espaciais |
spellingShingle |
Localização industrial: uma aproximação usando processos pontuais espaciais Morales, Adriano Barasal Localização de firmas; São Paulo; Estatística espacial; Processo pontual de Poisson; LGCP; INLA Location of firms; São Paulo; Spatial statistics; Poisson point process; LGCP; INLA |
title_short |
Localização industrial: uma aproximação usando processos pontuais espaciais |
title_full |
Localização industrial: uma aproximação usando processos pontuais espaciais |
title_fullStr |
Localização industrial: uma aproximação usando processos pontuais espaciais |
title_full_unstemmed |
Localização industrial: uma aproximação usando processos pontuais espaciais |
title_sort |
Localização industrial: uma aproximação usando processos pontuais espaciais |
author |
Morales, Adriano Barasal |
author_facet |
Morales, Adriano Barasal |
author_role |
author |
dc.contributor.none.fl_str_mv |
Laurini, Marcio Poletti |
dc.contributor.author.fl_str_mv |
Morales, Adriano Barasal |
dc.subject.por.fl_str_mv |
Localização de firmas; São Paulo; Estatística espacial; Processo pontual de Poisson; LGCP; INLA Location of firms; São Paulo; Spatial statistics; Poisson point process; LGCP; INLA |
topic |
Localização de firmas; São Paulo; Estatística espacial; Processo pontual de Poisson; LGCP; INLA Location of firms; São Paulo; Spatial statistics; Poisson point process; LGCP; INLA |
description |
O objetivo desta pesquisa é mostrar como aproveitar novas bases de dados disponíveis e o avanço de métodos computacionais para extrair informações estatísticas sobre a localização espacial de firmas. Para isso, propomos uma aplicação de métodos de estatística espacial para modelar o padrão de localização de novas empresas de serviços no município de São Paulo. Neste trabalho, assumimos que a localização espacial dessas firmas foi gerada através de um processo pontual bidimensional e assim aplicamos dois modelos distintos: um baseado em intensidade não estocástica baseada no processo de Poisson, e um modelo de intensidade estocástica baseado processo de Cox log Gaussiano (Log Gaussian Cox Process - LGCP). A principal base de dados utilizada é base georeferenciada baseada no Cadastro Central de Empresas construída pelo Centro de Estudos da Metrópole (CEM), contendo observações de empresas na região metropolitana de São Paulo, para o ano base de 2000. Utilizamos como variáveis explicativas de localização informações advindas de sistemas de informações geográficas (SIG), o Censo demográfico e imagens de satélite do National Oceanic and Atmospheric Administration (NOAA). Os resultados encontrados mostram a importância dessa metodologia no processo de construção de modelos de localização espacial, combinando distintas fontes de dados e introduzindo novas perspectivas sobre o estudo empírico de economia urbana. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/96/96131/tde-10072018-111254/ |
url |
http://www.teses.usp.br/teses/disponiveis/96/96131/tde-10072018-111254/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256915408584704 |