Ajuste de modelos lineares usando estimadores de regressão para amostras complexas
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-024419/ |
Resumo: | Dados provenientes de pesquisas por amostragem vêm sendo cada vez mais usados para modelagem e análise estatística. Grande parte dos dados disponíveis hoje em dia provém de pesquisas com desenho amostral complexo, onde a hipótese de observaçõesiid (independentes e identicamente distribuídas), que tanto facilita a obtenção de resultados teóricos, não pode ser feita de forma automática. A Teoria da Amostragem tem desenvolvido estimadores de quantidades populacionais, como médias, totaise razões, que levam em conta o peso e o desenho amostral utilizado na pesquisa. Mas ainda há relativamente pouca literatura que trate das estatísticas mais complexas, como as usadas nas modelagens e análises de dados. Por esse motivo éimportante examinar como o emprego de desenhos amostrais complexos pode afetar o aproveitamento dos dados para a estimação e ajuste de modelos. Nascimento Silva (1996) investigou o aproveitamento de informações populacionais auxiliares para aestimação e ajuste de modelos paramétricos 'regulares', empregando o método de Máxima Pseudo-Verossimilhança. Um dos objetivos deste trabalho foi revisitar o de Nascimento Silva (1996), estendendo o estudo de simulação para avaliar o desempenhodos estimadores de variância de diferentes estimadores dos coeficientes de um modelo de regressão linear. Além disso, aplicaram-se diversos métodos de estimação de coeficientes de um modelo linear a dados obtidos com a amostra do CensoDemográfico de 1991, para uma das áreas de ponderação do município de Marília (SP) |
id |
USP_2126ee929da660f6992effadf2f3843e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-024419 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexasnot availablePesquisa E Planejamento EstatísticoDados provenientes de pesquisas por amostragem vêm sendo cada vez mais usados para modelagem e análise estatística. Grande parte dos dados disponíveis hoje em dia provém de pesquisas com desenho amostral complexo, onde a hipótese de observaçõesiid (independentes e identicamente distribuídas), que tanto facilita a obtenção de resultados teóricos, não pode ser feita de forma automática. A Teoria da Amostragem tem desenvolvido estimadores de quantidades populacionais, como médias, totaise razões, que levam em conta o peso e o desenho amostral utilizado na pesquisa. Mas ainda há relativamente pouca literatura que trate das estatísticas mais complexas, como as usadas nas modelagens e análises de dados. Por esse motivo éimportante examinar como o emprego de desenhos amostrais complexos pode afetar o aproveitamento dos dados para a estimação e ajuste de modelos. Nascimento Silva (1996) investigou o aproveitamento de informações populacionais auxiliares para aestimação e ajuste de modelos paramétricos 'regulares', empregando o método de Máxima Pseudo-Verossimilhança. Um dos objetivos deste trabalho foi revisitar o de Nascimento Silva (1996), estendendo o estudo de simulação para avaliar o desempenhodos estimadores de variância de diferentes estimadores dos coeficientes de um modelo de regressão linear. Além disso, aplicaram-se diversos métodos de estimação de coeficientes de um modelo linear a dados obtidos com a amostra do CensoDemográfico de 1991, para uma das áreas de ponderação do município de Marília (SP)Data from sample surveys are being used more and more in statistical modeling and analysis. Large part of the data available comes from complex sample surveys, where the hypothesis of iid (independent and identically distributed) observations,which facilitates the attainment of theoretical results, cannot be adopted in an automatic way. Sampling Theory has developed estimators of population quantities, such as means, totals and ratios, which take in account the sample design used inthe survey as well as the observation weights. However, the literature about estimation of more complex statistics, as those used in modeling and data analysis, is still scarce. For this reason, it is important to examine how the application ofcomplex sampling designs can affect the utilization of data for estimation and model fitting. Nascimento Silva (1996) investigated the utilization of auxiliary population information for estimation and fitting of parametric models, adopting thePseudo Maximum Likelihood approach. The main target of this thesis is to revisit the work of Nascimento Silva (1996), extending the simulation study in order to evaluate the performance of the variance estimators of distinct estimators of thecoefficient of a linear regression model. Furthermore, several estimation methods for coefficients of the linear model were applied to sample data from the 1991 Brazilian Demographic Census, selected from a small area in Marilia, São Paulo,BrazilBiblioteca Digitais de Teses e Dissertações da USPSilva, Pedro Luis do NascimentoDuarte, Renata Pacheco Nogueira1999-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-024419/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T11:57:02Zoai:teses.usp.br:tde-20210729-024419Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T11:57:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas not available |
title |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas |
spellingShingle |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas Duarte, Renata Pacheco Nogueira Pesquisa E Planejamento Estatístico |
title_short |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas |
title_full |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas |
title_fullStr |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas |
title_full_unstemmed |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas |
title_sort |
Ajuste de modelos lineares usando estimadores de regressão para amostras complexas |
author |
Duarte, Renata Pacheco Nogueira |
author_facet |
Duarte, Renata Pacheco Nogueira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Pedro Luis do Nascimento |
dc.contributor.author.fl_str_mv |
Duarte, Renata Pacheco Nogueira |
dc.subject.por.fl_str_mv |
Pesquisa E Planejamento Estatístico |
topic |
Pesquisa E Planejamento Estatístico |
description |
Dados provenientes de pesquisas por amostragem vêm sendo cada vez mais usados para modelagem e análise estatística. Grande parte dos dados disponíveis hoje em dia provém de pesquisas com desenho amostral complexo, onde a hipótese de observaçõesiid (independentes e identicamente distribuídas), que tanto facilita a obtenção de resultados teóricos, não pode ser feita de forma automática. A Teoria da Amostragem tem desenvolvido estimadores de quantidades populacionais, como médias, totaise razões, que levam em conta o peso e o desenho amostral utilizado na pesquisa. Mas ainda há relativamente pouca literatura que trate das estatísticas mais complexas, como as usadas nas modelagens e análises de dados. Por esse motivo éimportante examinar como o emprego de desenhos amostrais complexos pode afetar o aproveitamento dos dados para a estimação e ajuste de modelos. Nascimento Silva (1996) investigou o aproveitamento de informações populacionais auxiliares para aestimação e ajuste de modelos paramétricos 'regulares', empregando o método de Máxima Pseudo-Verossimilhança. Um dos objetivos deste trabalho foi revisitar o de Nascimento Silva (1996), estendendo o estudo de simulação para avaliar o desempenhodos estimadores de variância de diferentes estimadores dos coeficientes de um modelo de regressão linear. Além disso, aplicaram-se diversos métodos de estimação de coeficientes de um modelo linear a dados obtidos com a amostra do CensoDemográfico de 1991, para uma das áreas de ponderação do município de Marília (SP) |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-12-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-024419/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-024419/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257208213995520 |