Modelagem gerativa para sumarização automática multidocumento

Detalhes bibliográficos
Autor(a) principal: Jorge, María Lucía Del Rosario Castro
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04082015-164725/
Resumo: A Sumarização Multidocumento consiste na produção automática de um único sumário a partir de um conjunto de textos que tratam de um mesmo assunto. Essa tarefa vem se tornando cada vez mais importante, já que auxilia o processamento de grandes volumes de informação, permitindo destacar a informação mais relevante para o usuário. Nesse trabalho, são propostas e exploradas modelagens baseadas em Aprendizado Gerativo, em que a tarefa de Sumarização Multidocumento é esquematizada usando o modelo Noisy- Channel e seus componentes de modelagem de língua, de transformação e decodificação, que são apropriadamente instanciados para a tarefa em questão. Essas modelagens são formuladas com atributos superficiais e profundos. Em particular, foram definidos três modelos de transformação, cujas histórias gerativas capturam padrões de seleção de conteúdo a partir de conjuntos de textos e seus correspondentes sumários multidocumento produzidos por humanos. O primeiro modelo é relativamente mais simples, pois é composto por atributos superficiais tradicionais; o segundo modelo é mais complexo, pois, além de atributos superficiais, adiciona atributos discursivos monodocumento; finalmente, o terceiro modelo é o mais complexo, pois integra atributos superficiais, de natureza discursiva monodocumento e semântico-discursiva multidocumento, pelo uso de informação proveniente das teorias RST e CST, respectivamente. Além desses modelos, também foi desenvolvido um modelo de coerência (ou modelo de língua) para sumários multidocumento, que é projetado para capturar padrões de coerência, tratando alguns dos principais fenômenos multidocumento que a afetam. Esse modelo foi desenvolvido com base no modelo de entidades e com informações discursivas. Cada um desses modelos foi inferido a partir do córpus CSTNews de textos jornalísticos e seus respectivos sumários em português. Finalmente, foi desenvolvido também um decodificador para realizar a construção do sumário a partir das inferências obtidas. O decodificador seleciona o subconjunto de sentenças que maximizam a probabilidade do sumário de acordo com as probabilidades inferidas nos modelos de seleção de conteúdo e o modelo de coerência. Esse decodificador inclui também uma estratégia para evitar que sentenças redundantes sejam incluídas no sumário final. Os sumários produzidos a partir dessa modelagem gerativa são comparados com os sumários produzidos por métodos estatísticos do estado da arte, os quais foram implementados, treinados e testados sobre o córpus. Utilizando-se avaliações de informatividade tradicionais da área, os resultados obtidos mostram que os modelos desenvolvidos neste trabalho são competitivos com os métodos estatísticos do estado da arte e, em alguns casos, os superam.
id USP_21edcbdf4560e1d8929629ab6c6680b5
oai_identifier_str oai:teses.usp.br:tde-04082015-164725
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelagem gerativa para sumarização automática multidocumentoGenerative modeling for multi-document sumarizationAprendizado de máquinaGenerative modelingMachine learningModelagem gerativaMulti-document sumarizationSumarização multidocumentoA Sumarização Multidocumento consiste na produção automática de um único sumário a partir de um conjunto de textos que tratam de um mesmo assunto. Essa tarefa vem se tornando cada vez mais importante, já que auxilia o processamento de grandes volumes de informação, permitindo destacar a informação mais relevante para o usuário. Nesse trabalho, são propostas e exploradas modelagens baseadas em Aprendizado Gerativo, em que a tarefa de Sumarização Multidocumento é esquematizada usando o modelo Noisy- Channel e seus componentes de modelagem de língua, de transformação e decodificação, que são apropriadamente instanciados para a tarefa em questão. Essas modelagens são formuladas com atributos superficiais e profundos. Em particular, foram definidos três modelos de transformação, cujas histórias gerativas capturam padrões de seleção de conteúdo a partir de conjuntos de textos e seus correspondentes sumários multidocumento produzidos por humanos. O primeiro modelo é relativamente mais simples, pois é composto por atributos superficiais tradicionais; o segundo modelo é mais complexo, pois, além de atributos superficiais, adiciona atributos discursivos monodocumento; finalmente, o terceiro modelo é o mais complexo, pois integra atributos superficiais, de natureza discursiva monodocumento e semântico-discursiva multidocumento, pelo uso de informação proveniente das teorias RST e CST, respectivamente. Além desses modelos, também foi desenvolvido um modelo de coerência (ou modelo de língua) para sumários multidocumento, que é projetado para capturar padrões de coerência, tratando alguns dos principais fenômenos multidocumento que a afetam. Esse modelo foi desenvolvido com base no modelo de entidades e com informações discursivas. Cada um desses modelos foi inferido a partir do córpus CSTNews de textos jornalísticos e seus respectivos sumários em português. Finalmente, foi desenvolvido também um decodificador para realizar a construção do sumário a partir das inferências obtidas. O decodificador seleciona o subconjunto de sentenças que maximizam a probabilidade do sumário de acordo com as probabilidades inferidas nos modelos de seleção de conteúdo e o modelo de coerência. Esse decodificador inclui também uma estratégia para evitar que sentenças redundantes sejam incluídas no sumário final. Os sumários produzidos a partir dessa modelagem gerativa são comparados com os sumários produzidos por métodos estatísticos do estado da arte, os quais foram implementados, treinados e testados sobre o córpus. Utilizando-se avaliações de informatividade tradicionais da área, os resultados obtidos mostram que os modelos desenvolvidos neste trabalho são competitivos com os métodos estatísticos do estado da arte e, em alguns casos, os superam.Multi-document Summarization consists in automatically producing a unique summary from a set of source texts that share a common topic. This task is becoming more important, since it supports large volume data processing, enabling to highlight relevant information to the users. In this work, generative modeling approaches are proposed and investigated, where the Multidocument Summarization task is modeled through the Noisy-Channel framework and its components: language model, transformation model and decoding, which are properly instantiated for the correspondent task. These models are formulated with shallow and deep features. Particularly, three main transformation models were defined, establishing generative stories that capture content selection patterns from sets of source texts and their corresponding human multi-document summaries. The first model is the less complex, since its features are traditional shallow features; the second model is more complex, incorporating single-document discursive knowledge features (given by RST) to the features proposed in the first model; finally, the third model is the most complex, since it incorporates multi-document discursive knowledge features (given by CST) to the features provided by models 1 and 2. Besides these models, it was also developed a coherence model (represented by the Noisy-Channel´s language model) for multi-document summaries. This model, different from transformation models, aims at capturing coerence patterns in multi-document summaries. This model was developed over the Entity-based Model and incorporates discursive knowledge in order to capture coherence patterns, exploring multi-document phenomena. Each of these models was treined with the CSTNews córpus of journalistic texts and their corresponding summaries. Finally, a decoder to search for the summary that maximizes the probability of the estimated models was developed. The decoder selects the subset of sentences that maximize the estimated probabilities. The decoder also includes an additional functionality for treating redundancy in the decoding process by using discursive information from the CST. The produced summaries are compared with the summaries produced by state of the art generative models, which were also treined and tested with the CSTNews corpus. The evaluation was carried out using traditional informativeness measures, and the results showed that the generative models developed in this work are competitive with the state of the art statistical models, and, in some cases, they outperform them. .Biblioteca Digitais de Teses e Dissertações da USPPardo, Thiago Alexandre SalgueiroJorge, María Lucía Del Rosario Castro2015-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-04082015-164725/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-04082015-164725Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelagem gerativa para sumarização automática multidocumento
Generative modeling for multi-document sumarization
title Modelagem gerativa para sumarização automática multidocumento
spellingShingle Modelagem gerativa para sumarização automática multidocumento
Jorge, María Lucía Del Rosario Castro
Aprendizado de máquina
Generative modeling
Machine learning
Modelagem gerativa
Multi-document sumarization
Sumarização multidocumento
title_short Modelagem gerativa para sumarização automática multidocumento
title_full Modelagem gerativa para sumarização automática multidocumento
title_fullStr Modelagem gerativa para sumarização automática multidocumento
title_full_unstemmed Modelagem gerativa para sumarização automática multidocumento
title_sort Modelagem gerativa para sumarização automática multidocumento
author Jorge, María Lucía Del Rosario Castro
author_facet Jorge, María Lucía Del Rosario Castro
author_role author
dc.contributor.none.fl_str_mv Pardo, Thiago Alexandre Salgueiro
dc.contributor.author.fl_str_mv Jorge, María Lucía Del Rosario Castro
dc.subject.por.fl_str_mv Aprendizado de máquina
Generative modeling
Machine learning
Modelagem gerativa
Multi-document sumarization
Sumarização multidocumento
topic Aprendizado de máquina
Generative modeling
Machine learning
Modelagem gerativa
Multi-document sumarization
Sumarização multidocumento
description A Sumarização Multidocumento consiste na produção automática de um único sumário a partir de um conjunto de textos que tratam de um mesmo assunto. Essa tarefa vem se tornando cada vez mais importante, já que auxilia o processamento de grandes volumes de informação, permitindo destacar a informação mais relevante para o usuário. Nesse trabalho, são propostas e exploradas modelagens baseadas em Aprendizado Gerativo, em que a tarefa de Sumarização Multidocumento é esquematizada usando o modelo Noisy- Channel e seus componentes de modelagem de língua, de transformação e decodificação, que são apropriadamente instanciados para a tarefa em questão. Essas modelagens são formuladas com atributos superficiais e profundos. Em particular, foram definidos três modelos de transformação, cujas histórias gerativas capturam padrões de seleção de conteúdo a partir de conjuntos de textos e seus correspondentes sumários multidocumento produzidos por humanos. O primeiro modelo é relativamente mais simples, pois é composto por atributos superficiais tradicionais; o segundo modelo é mais complexo, pois, além de atributos superficiais, adiciona atributos discursivos monodocumento; finalmente, o terceiro modelo é o mais complexo, pois integra atributos superficiais, de natureza discursiva monodocumento e semântico-discursiva multidocumento, pelo uso de informação proveniente das teorias RST e CST, respectivamente. Além desses modelos, também foi desenvolvido um modelo de coerência (ou modelo de língua) para sumários multidocumento, que é projetado para capturar padrões de coerência, tratando alguns dos principais fenômenos multidocumento que a afetam. Esse modelo foi desenvolvido com base no modelo de entidades e com informações discursivas. Cada um desses modelos foi inferido a partir do córpus CSTNews de textos jornalísticos e seus respectivos sumários em português. Finalmente, foi desenvolvido também um decodificador para realizar a construção do sumário a partir das inferências obtidas. O decodificador seleciona o subconjunto de sentenças que maximizam a probabilidade do sumário de acordo com as probabilidades inferidas nos modelos de seleção de conteúdo e o modelo de coerência. Esse decodificador inclui também uma estratégia para evitar que sentenças redundantes sejam incluídas no sumário final. Os sumários produzidos a partir dessa modelagem gerativa são comparados com os sumários produzidos por métodos estatísticos do estado da arte, os quais foram implementados, treinados e testados sobre o córpus. Utilizando-se avaliações de informatividade tradicionais da área, os resultados obtidos mostram que os modelos desenvolvidos neste trabalho são competitivos com os métodos estatísticos do estado da arte e, em alguns casos, os superam.
publishDate 2015
dc.date.none.fl_str_mv 2015-03-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04082015-164725/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04082015-164725/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256667081670656