Modelagem de propensão ao atrito no setor de telecomunicações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55137/tde-21082019-113700/ |
Resumo: | A satisfação dos clientes é fundamental para a manutenção do relacionamento com a empresa. Quando eles precisam resolver algum problema, a empresa necessita proporcionar bom atendimento e ter capacidade de resolutividade. No entanto, o atendimento massificado, muitas vezes, impossibilita soluções sensíveis às necessidades dos clientes. A metodologia estatística pode ajudar a empresa na priorização de clientes com perfil a reclamar em um órgão de defesa ao consumidor (ODC), evitando assim uma situação de atrito. Neste projeto, foi realizada a modelagem do comportamento do cliente com relação à propensão ao atrito. Foram testadas as técnicas de Regressão Logística, Random Forest e Algoritmos Genéticos. Os resultados mostraram que os Algoritmos Genéticos são uma boa opção para tornar o modelo mais simples (parcimonioso), sem perda de performance, e que o Random Forest possibilitou ganho de performance, porém torna o modelo mais complexo, tanto do ponto de vista computacional quanto prático no que tange à implantação em sistemas de produção da empresa. |
id |
USP_22067ce4d259bbbbe7e21ae1e8068de1 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21082019-113700 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelagem de propensão ao atrito no setor de telecomunicaçõesModeling Attrition Propensity in the Telecommunication SectorAprendizado de máquinaAtritoAttritionMachine learningPropensity scoreScore de propensãoA satisfação dos clientes é fundamental para a manutenção do relacionamento com a empresa. Quando eles precisam resolver algum problema, a empresa necessita proporcionar bom atendimento e ter capacidade de resolutividade. No entanto, o atendimento massificado, muitas vezes, impossibilita soluções sensíveis às necessidades dos clientes. A metodologia estatística pode ajudar a empresa na priorização de clientes com perfil a reclamar em um órgão de defesa ao consumidor (ODC), evitando assim uma situação de atrito. Neste projeto, foi realizada a modelagem do comportamento do cliente com relação à propensão ao atrito. Foram testadas as técnicas de Regressão Logística, Random Forest e Algoritmos Genéticos. Os resultados mostraram que os Algoritmos Genéticos são uma boa opção para tornar o modelo mais simples (parcimonioso), sem perda de performance, e que o Random Forest possibilitou ganho de performance, porém torna o modelo mais complexo, tanto do ponto de vista computacional quanto prático no que tange à implantação em sistemas de produção da empresa.Customer satisfaction is key to maintaining the relationship with the company. When these need to solve some problem, the company needs to provide good service and have resolving capacity. However, the mass service often makes it impossible. The statistical methodology can help the company in the prioritization of clients with profile to complain in ODC, thus avoiding a situation of attrition. In this project was carried out the modeling of the behavior of the client in relation to the propensity to attrition. Logistic Regression, Random Forest and Genetic Algorithms were tested. The results showed that the Genetic Algorithms are a good option to make the model simpler (parsimonious) without loss of performance and that Random Forest allowed performance gain, but it makes the model more complex, both from the point of view computational and practical in relation to the implantation in production systems of the company.Biblioteca Digitais de Teses e Dissertações da USPLouzada Neto, FranciscoArruda, Rodolfo Augusto da Silva2019-03-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55137/tde-21082019-113700/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-08-22T21:25:05Zoai:teses.usp.br:tde-21082019-113700Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-08-22T21:25:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelagem de propensão ao atrito no setor de telecomunicações Modeling Attrition Propensity in the Telecommunication Sector |
title |
Modelagem de propensão ao atrito no setor de telecomunicações |
spellingShingle |
Modelagem de propensão ao atrito no setor de telecomunicações Arruda, Rodolfo Augusto da Silva Aprendizado de máquina Atrito Attrition Machine learning Propensity score Score de propensão |
title_short |
Modelagem de propensão ao atrito no setor de telecomunicações |
title_full |
Modelagem de propensão ao atrito no setor de telecomunicações |
title_fullStr |
Modelagem de propensão ao atrito no setor de telecomunicações |
title_full_unstemmed |
Modelagem de propensão ao atrito no setor de telecomunicações |
title_sort |
Modelagem de propensão ao atrito no setor de telecomunicações |
author |
Arruda, Rodolfo Augusto da Silva |
author_facet |
Arruda, Rodolfo Augusto da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Louzada Neto, Francisco |
dc.contributor.author.fl_str_mv |
Arruda, Rodolfo Augusto da Silva |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Atrito Attrition Machine learning Propensity score Score de propensão |
topic |
Aprendizado de máquina Atrito Attrition Machine learning Propensity score Score de propensão |
description |
A satisfação dos clientes é fundamental para a manutenção do relacionamento com a empresa. Quando eles precisam resolver algum problema, a empresa necessita proporcionar bom atendimento e ter capacidade de resolutividade. No entanto, o atendimento massificado, muitas vezes, impossibilita soluções sensíveis às necessidades dos clientes. A metodologia estatística pode ajudar a empresa na priorização de clientes com perfil a reclamar em um órgão de defesa ao consumidor (ODC), evitando assim uma situação de atrito. Neste projeto, foi realizada a modelagem do comportamento do cliente com relação à propensão ao atrito. Foram testadas as técnicas de Regressão Logística, Random Forest e Algoritmos Genéticos. Os resultados mostraram que os Algoritmos Genéticos são uma boa opção para tornar o modelo mais simples (parcimonioso), sem perda de performance, e que o Random Forest possibilitou ganho de performance, porém torna o modelo mais complexo, tanto do ponto de vista computacional quanto prático no que tange à implantação em sistemas de produção da empresa. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55137/tde-21082019-113700/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55137/tde-21082019-113700/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257246879186944 |