Sistemas dinâmicos com um único ponto de equilíbrio e injetividade

Detalhes bibliográficos
Autor(a) principal: Santos, Jean Venato
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16032011-160652/
Resumo: A primeira parte deste trabalho é dedicada ao estudo de sistemas dinâmicos contínuos e discretos bidimensionais com um único ponto de equillíbrio que é do tipo sela hiperbólica. No caso contínuo, obtemos condições sufiientes para que um campo vetorial planar seja topologicamente equivalente à sela linear L(x; y) = (-x; y). No caso em que o campo vetorial é um difeomorfismo local, a injetividade do campo jogará um papel fundamental na obtenção de tal equivalência topológica. Além disto, apresentamos uma descrição das folheações do plano associadas a campos de vetores com uma única singularidade do tipo sela hiperbólica. No âmbito dos sistemas discretos, apresentamos condições para que um difeomorfismo, possuindo uma sela hiperbólica como único ponto fixo, satisfaça as propriedades básicas de um sistema linear com um ponto fixo que é do tipo sela hiperbólica: as quatro separatrizes do ponto fixo se acumulam só no infinito e os iterados dos pontos que não estão nas variedades invariantes deste ponto fixo se acumulam no infinito tanto no passado quanto no futuro. A segunda parte deste texto, se dedica a problemas de injetividade de difeomorfismos locais em \'R POT. n\'. Mais especificamente, obtemos versões fracas da Conjetura Jacobiana Real de Jelonek e de uma Conjetura apresentada por Nollet e Xavier. Ambos problemas estão intimamente ligados à famosa Conjetura Jacobiana, que foi considerada por Smale em 1998 como um dos dezoito problemas matemáticos mais relevantes ainda em aberto
id USP_221ff556d4ec1beaa38eed5788d85f27
oai_identifier_str oai:teses.usp.br:tde-16032011-160652
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sistemas dinâmicos com um único ponto de equilíbrio e injetividadeDynamical systems with a single equilibrium point and injectivityCampos vetoriais e difeomorfismos do planoGlobal injectivityGlobal saddleInjetividade globalPlanar vector fields and difeomorphismsSela globalA primeira parte deste trabalho é dedicada ao estudo de sistemas dinâmicos contínuos e discretos bidimensionais com um único ponto de equillíbrio que é do tipo sela hiperbólica. No caso contínuo, obtemos condições sufiientes para que um campo vetorial planar seja topologicamente equivalente à sela linear L(x; y) = (-x; y). No caso em que o campo vetorial é um difeomorfismo local, a injetividade do campo jogará um papel fundamental na obtenção de tal equivalência topológica. Além disto, apresentamos uma descrição das folheações do plano associadas a campos de vetores com uma única singularidade do tipo sela hiperbólica. No âmbito dos sistemas discretos, apresentamos condições para que um difeomorfismo, possuindo uma sela hiperbólica como único ponto fixo, satisfaça as propriedades básicas de um sistema linear com um ponto fixo que é do tipo sela hiperbólica: as quatro separatrizes do ponto fixo se acumulam só no infinito e os iterados dos pontos que não estão nas variedades invariantes deste ponto fixo se acumulam no infinito tanto no passado quanto no futuro. A segunda parte deste texto, se dedica a problemas de injetividade de difeomorfismos locais em \'R POT. n\'. Mais especificamente, obtemos versões fracas da Conjetura Jacobiana Real de Jelonek e de uma Conjetura apresentada por Nollet e Xavier. Ambos problemas estão intimamente ligados à famosa Conjetura Jacobiana, que foi considerada por Smale em 1998 como um dos dezoito problemas matemáticos mais relevantes ainda em abertoThe first part of this work is dedicated to the study of continuous and discrete twodimensional dynamical systems with a unique equilibrium point which is a hyperbolic saddle. In the continuous case, we obtain sufficient conditions for a planar vector field be topologically equivalent to the linear saddle L(x; y) = (-x; y). In the case where the vector field is a local diffeomorphism, the injectivity of the field will play a key role in obtaining such a topological equivalence. Furthermore, we provide a description of foliations of the plane vector fields associated with a unique singularity of hyperbolic saddle type. In the context of discrete systems, we present conditions for a diffeomorphism, possessing a hyperbolic saddle as the single fixed point, to satisfy the basic properties of a linear system with a fixed point of saddle type which is hyperbolic: the four separatrices of the fixed point accumulate only at infinity and iterated the points that are not in invariant manifolds of this fixed point accumulate in infinity in both the past and future. The second part of this text is devoted to problems of injectivity of local diffeomorphisms on \'R POT. n\'. More specifically, we obtain weaker versions of the Jelonek\'s Real Jacobian Conjecture and a Conjecture given by Nollet and Xavier. Both problems are closely linked to the famous Jacobian Conjecture, which was considered by Smale in 1998 as one of eighteen mathematical problems even more important in openBiblioteca Digitais de Teses e Dissertações da USPAlfaro, Jose Andres MartinezApaza, Carlos Alberto MaqueraSantos, Jean Venato2011-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-16032011-160652/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:28Zoai:teses.usp.br:tde-16032011-160652Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:28Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
Dynamical systems with a single equilibrium point and injectivity
title Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
spellingShingle Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
Santos, Jean Venato
Campos vetoriais e difeomorfismos do plano
Global injectivity
Global saddle
Injetividade global
Planar vector fields and difeomorphisms
Sela global
title_short Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
title_full Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
title_fullStr Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
title_full_unstemmed Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
title_sort Sistemas dinâmicos com um único ponto de equilíbrio e injetividade
author Santos, Jean Venato
author_facet Santos, Jean Venato
author_role author
dc.contributor.none.fl_str_mv Alfaro, Jose Andres Martinez
Apaza, Carlos Alberto Maquera
dc.contributor.author.fl_str_mv Santos, Jean Venato
dc.subject.por.fl_str_mv Campos vetoriais e difeomorfismos do plano
Global injectivity
Global saddle
Injetividade global
Planar vector fields and difeomorphisms
Sela global
topic Campos vetoriais e difeomorfismos do plano
Global injectivity
Global saddle
Injetividade global
Planar vector fields and difeomorphisms
Sela global
description A primeira parte deste trabalho é dedicada ao estudo de sistemas dinâmicos contínuos e discretos bidimensionais com um único ponto de equillíbrio que é do tipo sela hiperbólica. No caso contínuo, obtemos condições sufiientes para que um campo vetorial planar seja topologicamente equivalente à sela linear L(x; y) = (-x; y). No caso em que o campo vetorial é um difeomorfismo local, a injetividade do campo jogará um papel fundamental na obtenção de tal equivalência topológica. Além disto, apresentamos uma descrição das folheações do plano associadas a campos de vetores com uma única singularidade do tipo sela hiperbólica. No âmbito dos sistemas discretos, apresentamos condições para que um difeomorfismo, possuindo uma sela hiperbólica como único ponto fixo, satisfaça as propriedades básicas de um sistema linear com um ponto fixo que é do tipo sela hiperbólica: as quatro separatrizes do ponto fixo se acumulam só no infinito e os iterados dos pontos que não estão nas variedades invariantes deste ponto fixo se acumulam no infinito tanto no passado quanto no futuro. A segunda parte deste texto, se dedica a problemas de injetividade de difeomorfismos locais em \'R POT. n\'. Mais especificamente, obtemos versões fracas da Conjetura Jacobiana Real de Jelonek e de uma Conjetura apresentada por Nollet e Xavier. Ambos problemas estão intimamente ligados à famosa Conjetura Jacobiana, que foi considerada por Smale em 1998 como um dos dezoito problemas matemáticos mais relevantes ainda em aberto
publishDate 2011
dc.date.none.fl_str_mv 2011-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16032011-160652/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16032011-160652/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257014907961344