Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede

Detalhes bibliográficos
Autor(a) principal: Morais, Alysson Ferreira
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-14112014-130241/
Resumo: Neste trabalho, estudamos as dualidades entre modelos de spin em redes bidimensionais a partir de uma abordagem tensorial. Nessa abordagem, componentes de tensores são associadas aos vértices e arestas da rede de forma que a função de partição Z é construída a partir da contração dos índices dessas componentes e é, portanto, um escalar por mudanças de base da álgebra de grupo C[G] utilizada para a definição dos tensores. A partir daí, e observando que a forma das componentes fixam o modelo estudado, obtemos um modelo diferente para cada mudança de base proposta. Esses diferentes modelos possuirão, no entanto, a mesma função de partição, já que esta é um invariante sob tais transformações. De fato, haverá uma infinidade de modelos todos duais entre si. Neste ponto, fixamos nossa atenção nos modelos com spin Zn, nos quais estão incluídos o modelo de Ising, o modelo de Potts e o modelo de Ashkin-Teller-Potts. Explorando uma transformação de base específica, fomos capazes de rederivar a dualidade de Kramers e Wanniers para o modelo de Ising. Usando argumentos análogos, mostramos também que os modelos de Potts com n = 3 e 4 são autoduais e que não existe autodualidade para este modelo com n _ 5. O modelo de Ashkin-Teller-Potts foi mostrado ser autodual para todo n 2 N.
id USP_22a12a2921ddf9ba3f0e3142cdc60c90
oai_identifier_str oai:teses.usp.br:tde-14112014-130241
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na redeA tensorial approach to the study of dualities between lattice spin modelsDualidadeDualitiesLattice modelsModelos de redeModelos de spinSpin modelsNeste trabalho, estudamos as dualidades entre modelos de spin em redes bidimensionais a partir de uma abordagem tensorial. Nessa abordagem, componentes de tensores são associadas aos vértices e arestas da rede de forma que a função de partição Z é construída a partir da contração dos índices dessas componentes e é, portanto, um escalar por mudanças de base da álgebra de grupo C[G] utilizada para a definição dos tensores. A partir daí, e observando que a forma das componentes fixam o modelo estudado, obtemos um modelo diferente para cada mudança de base proposta. Esses diferentes modelos possuirão, no entanto, a mesma função de partição, já que esta é um invariante sob tais transformações. De fato, haverá uma infinidade de modelos todos duais entre si. Neste ponto, fixamos nossa atenção nos modelos com spin Zn, nos quais estão incluídos o modelo de Ising, o modelo de Potts e o modelo de Ashkin-Teller-Potts. Explorando uma transformação de base específica, fomos capazes de rederivar a dualidade de Kramers e Wanniers para o modelo de Ising. Usando argumentos análogos, mostramos também que os modelos de Potts com n = 3 e 4 são autoduais e que não existe autodualidade para este modelo com n _ 5. O modelo de Ashkin-Teller-Potts foi mostrado ser autodual para todo n 2 N.In this work, we study the dualities between spin models in two-dimensional lattices from a tensorial approach. In this approach, we associate tensor components to the vertices and links so that the partition function Z is constructed by a contraction of the indices of the tensor components thereby making Z a scalar under change of basis of the group algebra C[G] used to de_ne the tensors. Having obtained this, and noting that the values of the components _x the studied model, we obtain a di_erent model for each basis transformation proposed. These di_erent models, however, have the same partition function since Z is invariant under these transformations. In fact we can obtain several models all dual to each other in this manner. We then focus on Zn spin models, which include the Ising model, the Potts model and Ashkin- Teller-Potts model. Exploring a speci_c basis transformation, we are able to rederive Kramers and Wanniers\' duality for the Ising model. With analogous arguments, we also show that Potts models with n = 3 and n = 4 are self-dual whereas this property is lost for n _ 5. The Ashkin-Teller-Potts model is shown to be self-dual for all n 2 N.Biblioteca Digitais de Teses e Dissertações da USPTeotonio Sobrinho, PauloMorais, Alysson Ferreira2014-06-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-14112014-130241/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-14112014-130241Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
A tensorial approach to the study of dualities between lattice spin models
title Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
spellingShingle Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
Morais, Alysson Ferreira
Dualidade
Dualities
Lattice models
Modelos de rede
Modelos de spin
Spin models
title_short Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
title_full Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
title_fullStr Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
title_full_unstemmed Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
title_sort Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
author Morais, Alysson Ferreira
author_facet Morais, Alysson Ferreira
author_role author
dc.contributor.none.fl_str_mv Teotonio Sobrinho, Paulo
dc.contributor.author.fl_str_mv Morais, Alysson Ferreira
dc.subject.por.fl_str_mv Dualidade
Dualities
Lattice models
Modelos de rede
Modelos de spin
Spin models
topic Dualidade
Dualities
Lattice models
Modelos de rede
Modelos de spin
Spin models
description Neste trabalho, estudamos as dualidades entre modelos de spin em redes bidimensionais a partir de uma abordagem tensorial. Nessa abordagem, componentes de tensores são associadas aos vértices e arestas da rede de forma que a função de partição Z é construída a partir da contração dos índices dessas componentes e é, portanto, um escalar por mudanças de base da álgebra de grupo C[G] utilizada para a definição dos tensores. A partir daí, e observando que a forma das componentes fixam o modelo estudado, obtemos um modelo diferente para cada mudança de base proposta. Esses diferentes modelos possuirão, no entanto, a mesma função de partição, já que esta é um invariante sob tais transformações. De fato, haverá uma infinidade de modelos todos duais entre si. Neste ponto, fixamos nossa atenção nos modelos com spin Zn, nos quais estão incluídos o modelo de Ising, o modelo de Potts e o modelo de Ashkin-Teller-Potts. Explorando uma transformação de base específica, fomos capazes de rederivar a dualidade de Kramers e Wanniers para o modelo de Ising. Usando argumentos análogos, mostramos também que os modelos de Potts com n = 3 e 4 são autoduais e que não existe autodualidade para este modelo com n _ 5. O modelo de Ashkin-Teller-Potts foi mostrado ser autodual para todo n 2 N.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-14112014-130241/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-14112014-130241/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256976516448256