Um modelo unificado para planejamento sob incerteza
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15022010-161012/ |
Resumo: | Dois modelos principais de planejamento em inteligência artificial são os usados, respectivamente, em planejamento probabilístico (MDPs e suas generalizações) e em planejamento não-determinístico (baseado em model checking). Nessa dissertação será: (1) exibido que planejamento probabilístico e não-determinístico são extremos de um rico contínuo de problemas capaz de lidar simultaneamente com risco e incerteza (Knightiana); (2) obtido um modelo para unificar esses dois tipos de problemas usando MDPs imprecisos; (3) derivado uma versão simplificada do princípio ótimo de Bellman para esse novo modelo; (4) exibido como adaptar e analisar algoritmos do estado-da-arte, como (L)RTDP e LDFS, nesse modelo unificado. Também será discutido exemplos e relações entre modelos já propostos para planejamento sob incerteza e o modelo proposto. |
id |
USP_2412178ec0fcb788961215ce4f1b077b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15022010-161012 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Um modelo unificado para planejamento sob incertezaAn unified model for planning under uncertaintyMDPMDPMDPSTMDPSTPlanejamento ProbabilísticoProbabilistic PlanningDois modelos principais de planejamento em inteligência artificial são os usados, respectivamente, em planejamento probabilístico (MDPs e suas generalizações) e em planejamento não-determinístico (baseado em model checking). Nessa dissertação será: (1) exibido que planejamento probabilístico e não-determinístico são extremos de um rico contínuo de problemas capaz de lidar simultaneamente com risco e incerteza (Knightiana); (2) obtido um modelo para unificar esses dois tipos de problemas usando MDPs imprecisos; (3) derivado uma versão simplificada do princípio ótimo de Bellman para esse novo modelo; (4) exibido como adaptar e analisar algoritmos do estado-da-arte, como (L)RTDP e LDFS, nesse modelo unificado. Também será discutido exemplos e relações entre modelos já propostos para planejamento sob incerteza e o modelo proposto.Two noteworthy models of planning in AI are probabilistic planning (based on MDPs and its generalizations) and nondeterministic planning (mainly based on model checking). In this dissertation we: (1) show that probabilistic and nondeterministic planning are extremes of a rich continuum of problems that deal simultaneously with risk and (Knightian) uncertainty; (2) obtain a unifying model for these problems using imprecise MDPs; (3) derive a simplified Bellman\'s principle of optimality for our model; and (4) show how to adapt and analyze state-of-art algorithms such as (L)RTDP and LDFS in this unifying setup. We discuss examples and connections to various proposals for planning under (general) uncertainty.Biblioteca Digitais de Teses e Dissertações da USPBarros, Leliane Nunes deTrevizan, Felipe Werndl2006-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-15022010-161012/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-15022010-161012Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Um modelo unificado para planejamento sob incerteza An unified model for planning under uncertainty |
title |
Um modelo unificado para planejamento sob incerteza |
spellingShingle |
Um modelo unificado para planejamento sob incerteza Trevizan, Felipe Werndl MDP MDP MDPST MDPST Planejamento Probabilístico Probabilistic Planning |
title_short |
Um modelo unificado para planejamento sob incerteza |
title_full |
Um modelo unificado para planejamento sob incerteza |
title_fullStr |
Um modelo unificado para planejamento sob incerteza |
title_full_unstemmed |
Um modelo unificado para planejamento sob incerteza |
title_sort |
Um modelo unificado para planejamento sob incerteza |
author |
Trevizan, Felipe Werndl |
author_facet |
Trevizan, Felipe Werndl |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barros, Leliane Nunes de |
dc.contributor.author.fl_str_mv |
Trevizan, Felipe Werndl |
dc.subject.por.fl_str_mv |
MDP MDP MDPST MDPST Planejamento Probabilístico Probabilistic Planning |
topic |
MDP MDP MDPST MDPST Planejamento Probabilístico Probabilistic Planning |
description |
Dois modelos principais de planejamento em inteligência artificial são os usados, respectivamente, em planejamento probabilístico (MDPs e suas generalizações) e em planejamento não-determinístico (baseado em model checking). Nessa dissertação será: (1) exibido que planejamento probabilístico e não-determinístico são extremos de um rico contínuo de problemas capaz de lidar simultaneamente com risco e incerteza (Knightiana); (2) obtido um modelo para unificar esses dois tipos de problemas usando MDPs imprecisos; (3) derivado uma versão simplificada do princípio ótimo de Bellman para esse novo modelo; (4) exibido como adaptar e analisar algoritmos do estado-da-arte, como (L)RTDP e LDFS, nesse modelo unificado. Também será discutido exemplos e relações entre modelos já propostos para planejamento sob incerteza e o modelo proposto. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-05-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15022010-161012/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15022010-161012/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256983502061568 |