Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160652/ |
Resumo: | Nas últimas décadas, tem havido um crescente interesse na detecção precoce das doenças que afetam as culturas agrícolas a fim de evitar grandes perdas econômicas devido à contaminação de novas plantas. Dentre essas doenças as que mais se destacam e são mais letais para a citricultura são o cancro cítrico e greening, ambas ameaçando produções do mundo todo, incluindo regiões do Brasil e dos Estados Unidos. Por se tratar de doenças que possuem um alto índice de contaminação, estas levam a uma redução no número de pomares cultivados causando grande dano econômico aos produtores e as industrias relacionadas. Cada vez mais métodos para diagnóstico antecipado são necessários, tornando-se ferramentas importantes para a saudabilidade da lavoura e consequentemente do negócio. Algumas deficiências de solo como a falta de ferro e zinco apresentam sintomas visuais semelhantes nas folhas das plantas com o greening, enquanto que o cancro cítrico pode ser confundido com a verrugose, podendo levar a diagnósticos errôneos. Atualmente, somente testes bioquímicos são capazes de detectar especificamente o cancro cítrico e o greening, e consequentemente diferenciá-los das demais doenças e deficiências de nutricionais. Nesse trabalho, a técnica de espectroscopia por imagens de fluorescência em conjunto com os métodos de aprendizado supervisionado (algoritmos de classificação), foram utilizadas com o objetivo de identificar e discriminar as principais doenças que afetam a citricultura nos estados de São Paulo/Brasil e da Flórida/EUA. As amostras em estudo são cancro cítrico, verrugose, greening e deficiência de zinco. O objetivo principal é discriminar as doenças sem a necessidade de uma prévia avaliação ocular dos sintomas. Os resultados mostram que é possível utilizar a técnica de espectroscopia por imagens de fluorescência em conjunto a uma rede neural covolucional (AlexNet) para discriminação das doenças. O algoritmo apresentou uma elevada acurácia na classificação das amostras para as quatro doenças em questão quando comparado a outros algoritmos e um enorme ganho de tempo e redução de custo quando comparado ao método bioquímoco. |
id |
USP_25419a6db3a9c7f28c9f79163e65b93e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02092021-160652 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquinaDiagnosis tool for citrus diseases based on the combination of fluorescence spectroscopy techniques plus machine learning algorithmsAgricultura de precisãoArtificial neural networksDeep learningDeep learningEspectroscopia de fluorescênciaFluorescence spectroscopyPrecision agricultureRedes neurais artificiaisSVMSVMNas últimas décadas, tem havido um crescente interesse na detecção precoce das doenças que afetam as culturas agrícolas a fim de evitar grandes perdas econômicas devido à contaminação de novas plantas. Dentre essas doenças as que mais se destacam e são mais letais para a citricultura são o cancro cítrico e greening, ambas ameaçando produções do mundo todo, incluindo regiões do Brasil e dos Estados Unidos. Por se tratar de doenças que possuem um alto índice de contaminação, estas levam a uma redução no número de pomares cultivados causando grande dano econômico aos produtores e as industrias relacionadas. Cada vez mais métodos para diagnóstico antecipado são necessários, tornando-se ferramentas importantes para a saudabilidade da lavoura e consequentemente do negócio. Algumas deficiências de solo como a falta de ferro e zinco apresentam sintomas visuais semelhantes nas folhas das plantas com o greening, enquanto que o cancro cítrico pode ser confundido com a verrugose, podendo levar a diagnósticos errôneos. Atualmente, somente testes bioquímicos são capazes de detectar especificamente o cancro cítrico e o greening, e consequentemente diferenciá-los das demais doenças e deficiências de nutricionais. Nesse trabalho, a técnica de espectroscopia por imagens de fluorescência em conjunto com os métodos de aprendizado supervisionado (algoritmos de classificação), foram utilizadas com o objetivo de identificar e discriminar as principais doenças que afetam a citricultura nos estados de São Paulo/Brasil e da Flórida/EUA. As amostras em estudo são cancro cítrico, verrugose, greening e deficiência de zinco. O objetivo principal é discriminar as doenças sem a necessidade de uma prévia avaliação ocular dos sintomas. Os resultados mostram que é possível utilizar a técnica de espectroscopia por imagens de fluorescência em conjunto a uma rede neural covolucional (AlexNet) para discriminação das doenças. O algoritmo apresentou uma elevada acurácia na classificação das amostras para as quatro doenças em questão quando comparado a outros algoritmos e um enorme ganho de tempo e redução de custo quando comparado ao método bioquímoco.In recent decades, there has been a growing interest in the early detection of diseases that affect agricultural crops in order to avoid major economic losses due to the contamination of new plants. Among these diseases, the most prominent and most lethal for citrus crops are citrus and greening cancer, both of which threaten productions worldwide, including regions in Brazil and the United States. As these are diseases that have a high level of contamination, they lead to a reduction in the number of cultivated orchards causing great economic damage to producers and related industries. More and more methods for early diagnosis are needed, becoming important tools for the health of the crop and consequently the business. Some soil deficiencies, such as the lack of iron and zinc, show similar visual symptoms in the leaves of plants with greening, while citrus can be mistaken for warts, which can lead to misdiagnosis. Currently, only biochemical tests are able to specifically detect citrus canker and greening, and consequently differentiate them from other diseases and nutritional deficiencies. In this work, the technique of spectroscopy by fluorescence images in conjunction with supervised learning methods (classification algorithms), were used in order to identify and discriminate the main diseases that affect citrus in the states of São Paulo / Brazil and the Florida / USA. The samples being studied are citrus canker, warts, greening and zinc deficiency. The main objective is to discriminate diseases without the need for prior eye evaluation of symptoms. The results show that it is possible to use the technique of spectroscopy by fluorescence images in conjunction with a covolutional neural network (AlexNet) to discriminate diseases. The algorithm showed a high accuracy in the classification of the samples for the four diseases in question when compared to other algorithms and an enormous gain of time and cost reduction when compared to the biochemical method.Biblioteca Digitais de Teses e Dissertações da USPMarcassa, Luis GustavoSousa, Elaine Parros Machado deNeves, Ruan Felipe de Oliveira2021-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160652/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-09-15T21:55:03Zoai:teses.usp.br:tde-02092021-160652Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-15T21:55:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina Diagnosis tool for citrus diseases based on the combination of fluorescence spectroscopy techniques plus machine learning algorithms |
title |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina |
spellingShingle |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina Neves, Ruan Felipe de Oliveira Agricultura de precisão Artificial neural networks Deep learning Deep learning Espectroscopia de fluorescência Fluorescence spectroscopy Precision agriculture Redes neurais artificiais SVM SVM |
title_short |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina |
title_full |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina |
title_fullStr |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina |
title_full_unstemmed |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina |
title_sort |
Ferramenta para diagnóstico de doenças em citros baseada na combinação de técnicas de espectroscopia de fluorescência somada a algoritmos de aprendizagem de máquina |
author |
Neves, Ruan Felipe de Oliveira |
author_facet |
Neves, Ruan Felipe de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marcassa, Luis Gustavo Sousa, Elaine Parros Machado de |
dc.contributor.author.fl_str_mv |
Neves, Ruan Felipe de Oliveira |
dc.subject.por.fl_str_mv |
Agricultura de precisão Artificial neural networks Deep learning Deep learning Espectroscopia de fluorescência Fluorescence spectroscopy Precision agriculture Redes neurais artificiais SVM SVM |
topic |
Agricultura de precisão Artificial neural networks Deep learning Deep learning Espectroscopia de fluorescência Fluorescence spectroscopy Precision agriculture Redes neurais artificiais SVM SVM |
description |
Nas últimas décadas, tem havido um crescente interesse na detecção precoce das doenças que afetam as culturas agrícolas a fim de evitar grandes perdas econômicas devido à contaminação de novas plantas. Dentre essas doenças as que mais se destacam e são mais letais para a citricultura são o cancro cítrico e greening, ambas ameaçando produções do mundo todo, incluindo regiões do Brasil e dos Estados Unidos. Por se tratar de doenças que possuem um alto índice de contaminação, estas levam a uma redução no número de pomares cultivados causando grande dano econômico aos produtores e as industrias relacionadas. Cada vez mais métodos para diagnóstico antecipado são necessários, tornando-se ferramentas importantes para a saudabilidade da lavoura e consequentemente do negócio. Algumas deficiências de solo como a falta de ferro e zinco apresentam sintomas visuais semelhantes nas folhas das plantas com o greening, enquanto que o cancro cítrico pode ser confundido com a verrugose, podendo levar a diagnósticos errôneos. Atualmente, somente testes bioquímicos são capazes de detectar especificamente o cancro cítrico e o greening, e consequentemente diferenciá-los das demais doenças e deficiências de nutricionais. Nesse trabalho, a técnica de espectroscopia por imagens de fluorescência em conjunto com os métodos de aprendizado supervisionado (algoritmos de classificação), foram utilizadas com o objetivo de identificar e discriminar as principais doenças que afetam a citricultura nos estados de São Paulo/Brasil e da Flórida/EUA. As amostras em estudo são cancro cítrico, verrugose, greening e deficiência de zinco. O objetivo principal é discriminar as doenças sem a necessidade de uma prévia avaliação ocular dos sintomas. Os resultados mostram que é possível utilizar a técnica de espectroscopia por imagens de fluorescência em conjunto a uma rede neural covolucional (AlexNet) para discriminação das doenças. O algoritmo apresentou uma elevada acurácia na classificação das amostras para as quatro doenças em questão quando comparado a outros algoritmos e um enorme ganho de tempo e redução de custo quando comparado ao método bioquímoco. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160652/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160652/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256617115975680 |