Variability of soil hydraulic properties and its impact on agro-hydrological model predictions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/64/64134/tde-08102019-172326/ |
Resumo: | Agro-hydrological models have been widely used to predict and simulate soil water balance components and crop yield with reliable results. These models provide detailed water and energy balances and enables simulating scenarios with distinct land management strategies, environmental and climate conditions. However, they require many input parameters, especially those related to soil water retention and hydraulic conductivity functions. These input parameters are prone to variation due to the determination methods, related errors and uncertainties, and soil variability. In this thesis we aimed to (1) analyze the suitability of inverse modelling as an alternative to traditional methods to estimate soil hydraulic properties using water content data obtained with Frequency Domain Reflectometry (FDR) sensors in a field experiment; (2) analyze the influence of the Mualem-van Genuchten parameters (M VG) uncertainty on water balance components and crop yield predicted by the SWAP model for a soil under rainfed maize crop by uncertainty analysis using two sampling methods. One method used Monte Carlo Random Sampling from normal distribution based on standard errors of the hydraulic parameters obtained from inverse modelling (MCRS), and the other used Monte Carlo Latin Hypercube Sampling (MCLHS). Our results from the inverse modelling showed that n and Ks from both horizons, and ?r from the Bt horizon, were estimated with low accuracy. Low values of field water contents in the A horizon led to a lower estimate of ?r compared to the laboratory method. In the Bt horizon, the small observed range of field water contents contributed to an unreliable estimation of parameters ?r and n. The MCRS and MCLHS sampling methods provided distinct ranges and probability density distributions shape for n parameter, and simulates runoff, soil evaporation and bottom flux. The M VG parameters from MCRS may enhanced the uncertainty of simulated results, whereas MCLHS provided more reliable M VG parameters combinations, and therefore, simulated results. The uncertainty analysis may provide useful information about the uncertainties of model SWAP predictions and should be preferred over a mere deterministic approach, which often provided results diverging those obtained from probabilistic methods. Moreover, the uncertainty analysis is a key tool for more reliable interpretation of the water balance and crop yield in agro hydrological systems and should be considered in agro modelling studies |
id |
USP_26b380ce60fd2c323b5bf6b4c495ff5b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08102019-172326 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictionsVariabilidade das propriedades hidráulicas do solo e seu impacto nas previsões de um modelo agro-hidrológicoAnálise de incertezaInverse modellingModelagem inversaModelo SWAPPropriedades hidráulicas do soloRealização estocásticaSoil hydraulic propertiesStochastic realizationSWAP modelUncertainty analysisAgro-hydrological models have been widely used to predict and simulate soil water balance components and crop yield with reliable results. These models provide detailed water and energy balances and enables simulating scenarios with distinct land management strategies, environmental and climate conditions. However, they require many input parameters, especially those related to soil water retention and hydraulic conductivity functions. These input parameters are prone to variation due to the determination methods, related errors and uncertainties, and soil variability. In this thesis we aimed to (1) analyze the suitability of inverse modelling as an alternative to traditional methods to estimate soil hydraulic properties using water content data obtained with Frequency Domain Reflectometry (FDR) sensors in a field experiment; (2) analyze the influence of the Mualem-van Genuchten parameters (M VG) uncertainty on water balance components and crop yield predicted by the SWAP model for a soil under rainfed maize crop by uncertainty analysis using two sampling methods. One method used Monte Carlo Random Sampling from normal distribution based on standard errors of the hydraulic parameters obtained from inverse modelling (MCRS), and the other used Monte Carlo Latin Hypercube Sampling (MCLHS). Our results from the inverse modelling showed that n and Ks from both horizons, and ?r from the Bt horizon, were estimated with low accuracy. Low values of field water contents in the A horizon led to a lower estimate of ?r compared to the laboratory method. In the Bt horizon, the small observed range of field water contents contributed to an unreliable estimation of parameters ?r and n. The MCRS and MCLHS sampling methods provided distinct ranges and probability density distributions shape for n parameter, and simulates runoff, soil evaporation and bottom flux. The M VG parameters from MCRS may enhanced the uncertainty of simulated results, whereas MCLHS provided more reliable M VG parameters combinations, and therefore, simulated results. The uncertainty analysis may provide useful information about the uncertainties of model SWAP predictions and should be preferred over a mere deterministic approach, which often provided results diverging those obtained from probabilistic methods. Moreover, the uncertainty analysis is a key tool for more reliable interpretation of the water balance and crop yield in agro hydrological systems and should be considered in agro modelling studiesModelos agro-hidrológicos têm sido amplamente utilizados para predizer e simular os componentes do balanço hídrico e o rendimento de culturas gerando resultados confiáveis. Esses modelos fornecem balanços hídrico e de energia detalhados, além de permitir a simulação de cenários adotando diferentes estratégias de manejo do solo e em diversas condições ambientais e climáticas. No entanto, eles exigem um grande número de parâmetros de entrada, especialmente aqueles relacionados às funções de retenção de água e de condutividade hidráulica do solo. Por sua vez, esses parâmetros são sujeitos a variações provenientes dos métodos dos determinação, dos erros e incertezas relacionados a eles e da variabilidade do solo. Nessa tese objetivou-se (1) analisar a aptidão da modelagem inversa como uma alternativa aos métodos tradicionais para estimar as propriedades hidráulicas do solo utilizando dados de conteúdo de água obtidos por sensores de Reflectometria no Domínio da Frequência (FDR) em um experimento de campo; (2) analisar a influência da incerteza dos parâmetros de Mualem van Genuchten (M VG) nos componentes do balanço hídrico e no rendimento de culturas preditos pelo modelo de SWAP para a cultura do milho sem irrigação por meio de análise de incerteza utilizando dois métodos de amostragem. Um método utilizou amostragem aleatória de Monte Carlo baseado nos erros padrão dos parâmetros de M VG obtidos pela modelagem inversa (MCRS) e a outra utilizou o método de Monte Carlo de amostragem por Hipercubo Latino (MCLHS). Os resultados da modelagem inversa mostraram que os parâmetros n, Ks e ?r do horizonte Bt foram estimados com baixa precisão. Os baixos valores de conteúdo de água do solo no horizonte A resultaram em valores menores de ?r em comparação com o método de laboratório. No horizonte Bt, a estreita amplitude do conteúdo de água contribuiu para uma estimativa pouco confiável dos parâmetros ?r e n. Os dois métodos de amostragem resultaram em amplitudes e formatos de funções de densidade de probabilidade distintas para o n, e escoamento superficial, evaporação do solo e drenagem profunda simulados. O conjunto de parâmetros hidráulicos de M VG gerados pelo MCRS podem ter aumentado a incerteza dos resultados simulados, enquanto o MCLHS gerou combinações de parâmetros mais prováveis e resultados simulados mais confiáveis. A análise de incerteza pode fornecer informações importantes sobre as incertezas nas predições do modelo SWAP e deve ser preferida em detrimento à uma abordagem determinística, que geralmente fornece resultados divergentes dos gerados pelo método probabilístico. Além disso, a análise de incerteza é uma ferramenta chave para a interpretação mais confiável do balanço de água no solo e do rendimento de culturas e deve ser adotado nos estudos de modelagem agro-hidrológicaBiblioteca Digitais de Teses e Dissertações da USPLier, Quirijn de Jong vanOliveira, Thalita Campos2019-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/64/64134/tde-08102019-172326/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T21:09:00Zoai:teses.usp.br:tde-08102019-172326Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T21:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions Variabilidade das propriedades hidráulicas do solo e seu impacto nas previsões de um modelo agro-hidrológico |
title |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions |
spellingShingle |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions Oliveira, Thalita Campos Análise de incerteza Inverse modelling Modelagem inversa Modelo SWAP Propriedades hidráulicas do solo Realização estocástica Soil hydraulic properties Stochastic realization SWAP model Uncertainty analysis |
title_short |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions |
title_full |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions |
title_fullStr |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions |
title_full_unstemmed |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions |
title_sort |
Variability of soil hydraulic properties and its impact on agro-hydrological model predictions |
author |
Oliveira, Thalita Campos |
author_facet |
Oliveira, Thalita Campos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lier, Quirijn de Jong van |
dc.contributor.author.fl_str_mv |
Oliveira, Thalita Campos |
dc.subject.por.fl_str_mv |
Análise de incerteza Inverse modelling Modelagem inversa Modelo SWAP Propriedades hidráulicas do solo Realização estocástica Soil hydraulic properties Stochastic realization SWAP model Uncertainty analysis |
topic |
Análise de incerteza Inverse modelling Modelagem inversa Modelo SWAP Propriedades hidráulicas do solo Realização estocástica Soil hydraulic properties Stochastic realization SWAP model Uncertainty analysis |
description |
Agro-hydrological models have been widely used to predict and simulate soil water balance components and crop yield with reliable results. These models provide detailed water and energy balances and enables simulating scenarios with distinct land management strategies, environmental and climate conditions. However, they require many input parameters, especially those related to soil water retention and hydraulic conductivity functions. These input parameters are prone to variation due to the determination methods, related errors and uncertainties, and soil variability. In this thesis we aimed to (1) analyze the suitability of inverse modelling as an alternative to traditional methods to estimate soil hydraulic properties using water content data obtained with Frequency Domain Reflectometry (FDR) sensors in a field experiment; (2) analyze the influence of the Mualem-van Genuchten parameters (M VG) uncertainty on water balance components and crop yield predicted by the SWAP model for a soil under rainfed maize crop by uncertainty analysis using two sampling methods. One method used Monte Carlo Random Sampling from normal distribution based on standard errors of the hydraulic parameters obtained from inverse modelling (MCRS), and the other used Monte Carlo Latin Hypercube Sampling (MCLHS). Our results from the inverse modelling showed that n and Ks from both horizons, and ?r from the Bt horizon, were estimated with low accuracy. Low values of field water contents in the A horizon led to a lower estimate of ?r compared to the laboratory method. In the Bt horizon, the small observed range of field water contents contributed to an unreliable estimation of parameters ?r and n. The MCRS and MCLHS sampling methods provided distinct ranges and probability density distributions shape for n parameter, and simulates runoff, soil evaporation and bottom flux. The M VG parameters from MCRS may enhanced the uncertainty of simulated results, whereas MCLHS provided more reliable M VG parameters combinations, and therefore, simulated results. The uncertainty analysis may provide useful information about the uncertainties of model SWAP predictions and should be preferred over a mere deterministic approach, which often provided results diverging those obtained from probabilistic methods. Moreover, the uncertainty analysis is a key tool for more reliable interpretation of the water balance and crop yield in agro hydrological systems and should be considered in agro modelling studies |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/64/64134/tde-08102019-172326/ |
url |
http://www.teses.usp.br/teses/disponiveis/64/64134/tde-08102019-172326/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256813466025984 |