Projeto automático de operadores: explorando conhecimentos a priori
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45134/tde-20220712-115205/ |
Resumo: | A morfologia matemática vem sendo largamente utilizada para processamento e análise de imagens digitais. O projeto de operadores morfológicos é em geral realizado de forma heurística. Devido à dificuldade inerente a este procedimento, técnicas de projeto automático são de grande importância e interesse. Várias abordagens neste sentido vêm sendo propostas, dentre elas técnicas que projetam operadores a partir de exemplos de treinamento (obtidos de amostras de imagens observadas-ideais) que representam de forma simples a transformação desejada pelo usuário. Tomando uma técnica de projeto de operadores baseada no modelo de aprendizado PAC (do inglês, 'Probably Approximately Correct') como ponto de partida, investigamos de forma geral algumas das limitações dessas abordagens. Com base nessa investigação, estudamos o projeto de W-operadores, colocando ênfase sobre questões relacionadas com a precisão de operadores projetados a partir de uma quantidade limitada de exemplos de treinamento. Os frutos deste estudo, apresentamos neste trabalho, são técnicas que exploram conhecimentos sobre o problema que desejamos resolver para projetar operadores mais precisos e algoritmos eficientes para implementar as mesmas. Soluções para problemas reais de processamento de imagens ilustram a aplicação das técnicas propostas |
id |
USP_272b1e7fb865d62649a6fa9a6a0475ab |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20220712-115205 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Projeto automático de operadores: explorando conhecimentos a priorinot availableComputação GráficaProcessamento De ImagensA morfologia matemática vem sendo largamente utilizada para processamento e análise de imagens digitais. O projeto de operadores morfológicos é em geral realizado de forma heurística. Devido à dificuldade inerente a este procedimento, técnicas de projeto automático são de grande importância e interesse. Várias abordagens neste sentido vêm sendo propostas, dentre elas técnicas que projetam operadores a partir de exemplos de treinamento (obtidos de amostras de imagens observadas-ideais) que representam de forma simples a transformação desejada pelo usuário. Tomando uma técnica de projeto de operadores baseada no modelo de aprendizado PAC (do inglês, 'Probably Approximately Correct') como ponto de partida, investigamos de forma geral algumas das limitações dessas abordagens. Com base nessa investigação, estudamos o projeto de W-operadores, colocando ênfase sobre questões relacionadas com a precisão de operadores projetados a partir de uma quantidade limitada de exemplos de treinamento. Os frutos deste estudo, apresentamos neste trabalho, são técnicas que exploram conhecimentos sobre o problema que desejamos resolver para projetar operadores mais precisos e algoritmos eficientes para implementar as mesmas. Soluções para problemas reais de processamento de imagens ilustram a aplicação das técnicas propostasMathematical morphology is being widely used in image processing and analysis. Designing morphological operators is usually done by heuristic methods. However, due to the inherent difficulty of such procedures, automatic design techniques are of increasing interest. In recent years, several approaches for the automatic design of morphological operators have been proposed. Some of them are based on learning from training examples (sampled from observed-ideal pairs of images representing the desired image processing mapping). Starting from a technique based on PAC (probably Approximately Correct) learning model, we investigate some limitations of those approaches. From this investigation, we study the design ofW-operators emphatizing questions related with precision of operators designed from a limited number of training examples. The results of this study, presented in this work, are techniques which exploit knowledge (about the image processing problem being solved) in order to design more accurate operators and efficient algorithms for implementing them. Solutions for some real image processing problems are given to illustrate the application of the proposed techniquesBiblioteca Digitais de Teses e Dissertações da USPBarrera, JúniorHirata, Nina Sumiko Tomita2000-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45134/tde-20220712-115205/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-13T18:29:53Zoai:teses.usp.br:tde-20220712-115205Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-13T18:29:53Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Projeto automático de operadores: explorando conhecimentos a priori not available |
title |
Projeto automático de operadores: explorando conhecimentos a priori |
spellingShingle |
Projeto automático de operadores: explorando conhecimentos a priori Hirata, Nina Sumiko Tomita Computação Gráfica Processamento De Imagens |
title_short |
Projeto automático de operadores: explorando conhecimentos a priori |
title_full |
Projeto automático de operadores: explorando conhecimentos a priori |
title_fullStr |
Projeto automático de operadores: explorando conhecimentos a priori |
title_full_unstemmed |
Projeto automático de operadores: explorando conhecimentos a priori |
title_sort |
Projeto automático de operadores: explorando conhecimentos a priori |
author |
Hirata, Nina Sumiko Tomita |
author_facet |
Hirata, Nina Sumiko Tomita |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barrera, Júnior |
dc.contributor.author.fl_str_mv |
Hirata, Nina Sumiko Tomita |
dc.subject.por.fl_str_mv |
Computação Gráfica Processamento De Imagens |
topic |
Computação Gráfica Processamento De Imagens |
description |
A morfologia matemática vem sendo largamente utilizada para processamento e análise de imagens digitais. O projeto de operadores morfológicos é em geral realizado de forma heurística. Devido à dificuldade inerente a este procedimento, técnicas de projeto automático são de grande importância e interesse. Várias abordagens neste sentido vêm sendo propostas, dentre elas técnicas que projetam operadores a partir de exemplos de treinamento (obtidos de amostras de imagens observadas-ideais) que representam de forma simples a transformação desejada pelo usuário. Tomando uma técnica de projeto de operadores baseada no modelo de aprendizado PAC (do inglês, 'Probably Approximately Correct') como ponto de partida, investigamos de forma geral algumas das limitações dessas abordagens. Com base nessa investigação, estudamos o projeto de W-operadores, colocando ênfase sobre questões relacionadas com a precisão de operadores projetados a partir de uma quantidade limitada de exemplos de treinamento. Os frutos deste estudo, apresentamos neste trabalho, são técnicas que exploram conhecimentos sobre o problema que desejamos resolver para projetar operadores mais precisos e algoritmos eficientes para implementar as mesmas. Soluções para problemas reais de processamento de imagens ilustram a aplicação das técnicas propostas |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-10-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45134/tde-20220712-115205/ |
url |
https://teses.usp.br/teses/disponiveis/45/45134/tde-20220712-115205/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257216457900032 |