Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.

Detalhes bibliográficos
Autor(a) principal: Lorenzo, Carlos David Gonzales
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-28012020-144614/
Resumo: In this work, synthetic polycrystals of calcium silicate (CaSiO3) are prepared. The objective is to expand the current knowledge of low cost and easy production thermoluminescent detectors for doses of gamma radiation, thermal neutrons and accelerated ions beam, as well as, the possible applications in nuclear medicine or monitoring actual radiotherapy treatment. For that reason, calcium silicate doped with Boron, Cadmium, Dysprosium, and Europium were produced keeping in mind gamma and neutron detection. For the production of synthetic calcium silicate polycrystals, the devitrification method was used. In this process, two polytypes of undoped CaSiO3 were identified, alpha- and beta- polytypes. alpha-CaSiO3 is a very sensitive gamma radiation detector with main prominent thermoluminescence (TL) peak occurring at about 250-270 ºC and a low-temperature peak at 120 ºC, using 4 ºC/s heating rate. The TL response of alpha-CaSiO3 is linear for dose < 10 Gy and then has a supralinear behavior up to about 7 kGy and saturating beyond. The TL behavior changes very little by doping with B, Cd, and Dy while Eu doping brings changes. Additionally, beta-CaSiO3 polycrystal exhibits three TL peaks at 124, 250, and 306 ºC. All peaks at 124, 250 and 306 ºC for beta-CaSiO3 have a linear behavior in the dose range from cGy to 1 Gy. After that, the TL responses are supralinear up to about 3 kGy and then they are saturated. Synthetic polycrystals of CaSiO3 (doped or not) were also irradiated with neutrons from a nuclear research reactor. This thermal neutron reacts with Ca, Si and O through (n, gamma) process, all or part of the gamma emitted in this reaction is absorbed by the sample and is responsible for the induction of TL. The total energy emitted by the (n, gamma) reaction on the sample of CaSiO3 was calculated analytically. Furthermore, Monte Carlo simulations using the MCNP5 radiation transport code was carried out at the Nuclear Engineering Center in IPEN to calculate the deposited dose on CaSiO3 by the neutron interaction finding doses ranging from 42 Gy to 21 kGy. CaSiO3 TL glow curves, after radiation exposure from the reactor, display the main prominent TL peak around 234 - 259 ºC. Electron paramagnetic resonance (EPR) spectroscopy was used to study the defect centers induced in the polycrystals of alpha- and beta-CaSiO3 by gamma irradiation and to identify the centers responsible for the TL process. For beta-CaSiO3, three defect centers contribute to the observed spectrum at room temperature. Center I with principal g-values = 2.0135, 2.0094 and 2.0038 is attributed to O- ion and the center appears to be the recombination center for 124, 147, and 306 ºC TL peaks. Center II exhibiting an isotropic g-value of 2.00025 is identified as an F+-center. F+-center is also observed to be a recombination center for several TL peaks. Center III is assigned to a Ti3+ center displaying an orthorhombic g-tensor with principal values g1 = 1.9830, g2 = 1.9741 and g3 = 1.9046. This center is associated with 124 ºC and 147 ºC TL peaks. TL emission spectrum of beta-CaSiO3 shows two emission bands at 370 and 520 nm. In addition, pellets of CaSiO3 were irradiated at 160 MeV proton beam and at 290 MeV/n carbon ion beam from an upper synchrotron of HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan) at NIRS (National Institute of Radiological Sciences). These pellets of calcium silicate presented a prominent TL peak at 120 ºC and at 270 ºC when irradiated with proton and carbon ion beam. The dose read out in Harshaw TL reader presented a good agreement with doses found using ion chamber in the case of proton beams and slightly less in the case of carbon beam due to the linear energy transference (LET).
id USP_276446b958a66e15a694f8b121885fc3
oai_identifier_str oai:teses.usp.br:tde-28012020-144614
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.Produção de policristais sintéticos de CaSiO3 e seu estudo como novos detectores de radiação gama, nêutrons térmicos e íons aceleradosCalcium SilicateCentros de DefeitosDefect centerDevitrificaçãoDevitrification MethodDosimetria de íons aceleradosDosimetria de NêutronsDosimetria GamaElectron Spin ResonanceGamma dosimetryIon beam dosimetryIrradiação de prótons e íons de carbonoNeutron dosimetryNêutrons TérmicosPastilhas de CaSiO3.Pellets of CaSiO3.Policristais sintéticosPolycrystalProton and Carbon beam irradiationRessonância Paramagnética EletrônicaSilicato de CálcioTermoluminescênciaThermal NeutronsThermoluminescenceIn this work, synthetic polycrystals of calcium silicate (CaSiO3) are prepared. The objective is to expand the current knowledge of low cost and easy production thermoluminescent detectors for doses of gamma radiation, thermal neutrons and accelerated ions beam, as well as, the possible applications in nuclear medicine or monitoring actual radiotherapy treatment. For that reason, calcium silicate doped with Boron, Cadmium, Dysprosium, and Europium were produced keeping in mind gamma and neutron detection. For the production of synthetic calcium silicate polycrystals, the devitrification method was used. In this process, two polytypes of undoped CaSiO3 were identified, alpha- and beta- polytypes. alpha-CaSiO3 is a very sensitive gamma radiation detector with main prominent thermoluminescence (TL) peak occurring at about 250-270 ºC and a low-temperature peak at 120 ºC, using 4 ºC/s heating rate. The TL response of alpha-CaSiO3 is linear for dose < 10 Gy and then has a supralinear behavior up to about 7 kGy and saturating beyond. The TL behavior changes very little by doping with B, Cd, and Dy while Eu doping brings changes. Additionally, beta-CaSiO3 polycrystal exhibits three TL peaks at 124, 250, and 306 ºC. All peaks at 124, 250 and 306 ºC for beta-CaSiO3 have a linear behavior in the dose range from cGy to 1 Gy. After that, the TL responses are supralinear up to about 3 kGy and then they are saturated. Synthetic polycrystals of CaSiO3 (doped or not) were also irradiated with neutrons from a nuclear research reactor. This thermal neutron reacts with Ca, Si and O through (n, gamma) process, all or part of the gamma emitted in this reaction is absorbed by the sample and is responsible for the induction of TL. The total energy emitted by the (n, gamma) reaction on the sample of CaSiO3 was calculated analytically. Furthermore, Monte Carlo simulations using the MCNP5 radiation transport code was carried out at the Nuclear Engineering Center in IPEN to calculate the deposited dose on CaSiO3 by the neutron interaction finding doses ranging from 42 Gy to 21 kGy. CaSiO3 TL glow curves, after radiation exposure from the reactor, display the main prominent TL peak around 234 - 259 ºC. Electron paramagnetic resonance (EPR) spectroscopy was used to study the defect centers induced in the polycrystals of alpha- and beta-CaSiO3 by gamma irradiation and to identify the centers responsible for the TL process. For beta-CaSiO3, three defect centers contribute to the observed spectrum at room temperature. Center I with principal g-values = 2.0135, 2.0094 and 2.0038 is attributed to O- ion and the center appears to be the recombination center for 124, 147, and 306 ºC TL peaks. Center II exhibiting an isotropic g-value of 2.00025 is identified as an F+-center. F+-center is also observed to be a recombination center for several TL peaks. Center III is assigned to a Ti3+ center displaying an orthorhombic g-tensor with principal values g1 = 1.9830, g2 = 1.9741 and g3 = 1.9046. This center is associated with 124 ºC and 147 ºC TL peaks. TL emission spectrum of beta-CaSiO3 shows two emission bands at 370 and 520 nm. In addition, pellets of CaSiO3 were irradiated at 160 MeV proton beam and at 290 MeV/n carbon ion beam from an upper synchrotron of HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan) at NIRS (National Institute of Radiological Sciences). These pellets of calcium silicate presented a prominent TL peak at 120 ºC and at 270 ºC when irradiated with proton and carbon ion beam. The dose read out in Harshaw TL reader presented a good agreement with doses found using ion chamber in the case of proton beams and slightly less in the case of carbon beam due to the linear energy transference (LET).Neste trabalho, policristais sintéticos de silicato de cálcio (CaSiO3) foram preparados. O objetivo é ampliar o conhecimento atual dos detectores termoluminescentes de baixo custo e fácil produção para doses de radiação gama, nêutrons térmicos e feixe de íons acelerados e suas possíveis aplicações em medicina nuclear e radioterapia. Por essa razão o silicato de cálcio dopado com boro, cádmio, disprósio e európio foram produzidos tendo em mente a detecção de radiação gama e de nêutrons. Para a produção de policristais de silicato de cálcio sintético, foi utilizado o método de devitrificação. Nesse processo, foram identificados dois polítipos de CaSiO3 não dopados, alpha- e beta- CaSiO3. O alpha-CaSiO3 é um detector de radiação gama muito sensível, com o pico principal de termoluminescência (TL) ocorrendo em 250-270 ºC e um pico de baixa temperatura a 120 ºC utilizando uma taxa de aquecimento de 4 ºC/s. A resposta TL do alpha-CaSiO3 é linear para a dose < 10 Gy e, em seguida, apresenta um comportamento supralinear até 7 kGy, depois disso entra em saturação. O comportamento de TL muda muito pouco dopando com B, Cd e Dy, enquanto o dopado com o Eu traz mudanças. Além disso, o polycrystal beta-CaSiO3 exibe três picos TL em 124, 250 e 306 ºC. Todos estes picos têm um comportamento linear no intervalo de doses de cGy a 1 Gy. Depois disso, as respostas de TL são supralineares até cerca de 3 kGy e depois são saturadas. Policristais sintéticos de CaSiO3 (aqueles dopados e não dopados) foram também irradiados com nêutrons de um reator de pesquisa nuclear. Os nêutrons térmicos reagem com o Ca, Si e O através do processo (n, gamma), toda ou parte da radiação gama emitida nessa reação é absorvida pela amostra e é responsável pela indução de TL. A energia total emitida pela reação (n, gamma) na amostra de CaSiO3 não dopado foi calculada analiticamente. Além disso, simulações de Monte Carlo usando o código de transporte de radiação MCNP5 foram realizadas no Centro de Engenharia Nuclear no IPEN para calcular a dose depositada na amostra de CaSiO3 pela interação com os nêutrons do reator, encontrando doses variando de 42 Gy até 21 kGy. As curvas de TL do CaSiO3, após a exposição à radiação do reator, exibem o principal pico proeminente de TL em torno de 234 - 259 ºC. A Ressonância Paramagnética Eletrônica (RPE) foi usada para estudar os centros de defeitos induzidos nos policristais de alpha- e beta-CaSiO3 por irradiação gama e para identificar os centros responsáveis pelo processo de TL. Para beta-CaSiO3, três centros de defeitos contribuem para o espectro observado à temperatura ambiente. O centro I com os principais valores g = 2.0135, 2.0094 e 2.0038 é atribuído ao íon O- e o centro parece ser o centro de recombinação para os picos de TL em 124, 147, e 306 ºC. O Centro II que exibe um valor g isotrópico de 2.00025 é identificado como um centro F+. Também é observado que o centro F+ é um centro de recombinação para vários picos de TL. O centro III é atribuído a um centro de Ti3+ exibindo um tensor g ortorrômbico com valores principais de g1 = 1.9830, g2 = 1.9741 e g3 = 1.9046. Este centro está associado aos picos de TL em 124 e 147 ºC. O espectro de emissão TL de beta-CaSiO3 mostra duas bandas de emissão em 370 e 520 nm. Além disso, pastilhas de CaSiO3 foram irradiadas com um feixe de prótons de 160 MeV e com um feixe de íons de carbono de 290 MeV/n no sincrotron HIMAC no Instituto Nacional de Ciências Radiológicas (NIRS) em Chiba, Japão. As pastilhas de silicato de cálcio apresentaram um pico de TL em 120 ºC e um pico proeminente em 270 ºC quando irradiados com próton e feixe de íons de carbono. A dose lida no leitor Harshaw TL apresentou boa concordância com as doses encontradas na câmara de ionização no caso de feixes de prótons e um pouco menos no caso de feixes de carbono devido à dependência da transferência linear de energia (LET).Biblioteca Digitais de Teses e Dissertações da USPMamani, Nilo Francisco CanoWatanabe, ShigueoLorenzo, Carlos David Gonzales2019-12-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-28012020-144614/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-02-05T21:36:02Zoai:teses.usp.br:tde-28012020-144614Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-05T21:36:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
Produção de policristais sintéticos de CaSiO3 e seu estudo como novos detectores de radiação gama, nêutrons térmicos e íons acelerados
title Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
spellingShingle Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
Lorenzo, Carlos David Gonzales
Calcium Silicate
Centros de Defeitos
Defect center
Devitrificação
Devitrification Method
Dosimetria de íons acelerados
Dosimetria de Nêutrons
Dosimetria Gama
Electron Spin Resonance
Gamma dosimetry
Ion beam dosimetry
Irradiação de prótons e íons de carbono
Neutron dosimetry
Nêutrons Térmicos
Pastilhas de CaSiO3.
Pellets of CaSiO3.
Policristais sintéticos
Polycrystal
Proton and Carbon beam irradiation
Ressonância Paramagnética Eletrônica
Silicato de Cálcio
Termoluminescência
Thermal Neutrons
Thermoluminescence
title_short Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
title_full Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
title_fullStr Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
title_full_unstemmed Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
title_sort Production of synthetic polycrystals of CaSiO3 and their study as new detectors of gamma radiation, thermal neutrons and accelerated ions.
author Lorenzo, Carlos David Gonzales
author_facet Lorenzo, Carlos David Gonzales
author_role author
dc.contributor.none.fl_str_mv Mamani, Nilo Francisco Cano
Watanabe, Shigueo
dc.contributor.author.fl_str_mv Lorenzo, Carlos David Gonzales
dc.subject.por.fl_str_mv Calcium Silicate
Centros de Defeitos
Defect center
Devitrificação
Devitrification Method
Dosimetria de íons acelerados
Dosimetria de Nêutrons
Dosimetria Gama
Electron Spin Resonance
Gamma dosimetry
Ion beam dosimetry
Irradiação de prótons e íons de carbono
Neutron dosimetry
Nêutrons Térmicos
Pastilhas de CaSiO3.
Pellets of CaSiO3.
Policristais sintéticos
Polycrystal
Proton and Carbon beam irradiation
Ressonância Paramagnética Eletrônica
Silicato de Cálcio
Termoluminescência
Thermal Neutrons
Thermoluminescence
topic Calcium Silicate
Centros de Defeitos
Defect center
Devitrificação
Devitrification Method
Dosimetria de íons acelerados
Dosimetria de Nêutrons
Dosimetria Gama
Electron Spin Resonance
Gamma dosimetry
Ion beam dosimetry
Irradiação de prótons e íons de carbono
Neutron dosimetry
Nêutrons Térmicos
Pastilhas de CaSiO3.
Pellets of CaSiO3.
Policristais sintéticos
Polycrystal
Proton and Carbon beam irradiation
Ressonância Paramagnética Eletrônica
Silicato de Cálcio
Termoluminescência
Thermal Neutrons
Thermoluminescence
description In this work, synthetic polycrystals of calcium silicate (CaSiO3) are prepared. The objective is to expand the current knowledge of low cost and easy production thermoluminescent detectors for doses of gamma radiation, thermal neutrons and accelerated ions beam, as well as, the possible applications in nuclear medicine or monitoring actual radiotherapy treatment. For that reason, calcium silicate doped with Boron, Cadmium, Dysprosium, and Europium were produced keeping in mind gamma and neutron detection. For the production of synthetic calcium silicate polycrystals, the devitrification method was used. In this process, two polytypes of undoped CaSiO3 were identified, alpha- and beta- polytypes. alpha-CaSiO3 is a very sensitive gamma radiation detector with main prominent thermoluminescence (TL) peak occurring at about 250-270 ºC and a low-temperature peak at 120 ºC, using 4 ºC/s heating rate. The TL response of alpha-CaSiO3 is linear for dose < 10 Gy and then has a supralinear behavior up to about 7 kGy and saturating beyond. The TL behavior changes very little by doping with B, Cd, and Dy while Eu doping brings changes. Additionally, beta-CaSiO3 polycrystal exhibits three TL peaks at 124, 250, and 306 ºC. All peaks at 124, 250 and 306 ºC for beta-CaSiO3 have a linear behavior in the dose range from cGy to 1 Gy. After that, the TL responses are supralinear up to about 3 kGy and then they are saturated. Synthetic polycrystals of CaSiO3 (doped or not) were also irradiated with neutrons from a nuclear research reactor. This thermal neutron reacts with Ca, Si and O through (n, gamma) process, all or part of the gamma emitted in this reaction is absorbed by the sample and is responsible for the induction of TL. The total energy emitted by the (n, gamma) reaction on the sample of CaSiO3 was calculated analytically. Furthermore, Monte Carlo simulations using the MCNP5 radiation transport code was carried out at the Nuclear Engineering Center in IPEN to calculate the deposited dose on CaSiO3 by the neutron interaction finding doses ranging from 42 Gy to 21 kGy. CaSiO3 TL glow curves, after radiation exposure from the reactor, display the main prominent TL peak around 234 - 259 ºC. Electron paramagnetic resonance (EPR) spectroscopy was used to study the defect centers induced in the polycrystals of alpha- and beta-CaSiO3 by gamma irradiation and to identify the centers responsible for the TL process. For beta-CaSiO3, three defect centers contribute to the observed spectrum at room temperature. Center I with principal g-values = 2.0135, 2.0094 and 2.0038 is attributed to O- ion and the center appears to be the recombination center for 124, 147, and 306 ºC TL peaks. Center II exhibiting an isotropic g-value of 2.00025 is identified as an F+-center. F+-center is also observed to be a recombination center for several TL peaks. Center III is assigned to a Ti3+ center displaying an orthorhombic g-tensor with principal values g1 = 1.9830, g2 = 1.9741 and g3 = 1.9046. This center is associated with 124 ºC and 147 ºC TL peaks. TL emission spectrum of beta-CaSiO3 shows two emission bands at 370 and 520 nm. In addition, pellets of CaSiO3 were irradiated at 160 MeV proton beam and at 290 MeV/n carbon ion beam from an upper synchrotron of HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan) at NIRS (National Institute of Radiological Sciences). These pellets of calcium silicate presented a prominent TL peak at 120 ºC and at 270 ºC when irradiated with proton and carbon ion beam. The dose read out in Harshaw TL reader presented a good agreement with doses found using ion chamber in the case of proton beams and slightly less in the case of carbon beam due to the linear energy transference (LET).
publishDate 2019
dc.date.none.fl_str_mv 2019-12-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-28012020-144614/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-28012020-144614/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257424619110400