Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil

Detalhes bibliográficos
Autor(a) principal: Mendes, Olga Beatriz Barbosa
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18144/tde-19092023-101215/
Resumo: The predictive method presented in the Highway Safety Manual (HSM) estimates the crash frequency by combining a safety performance function (SPF) with crash modification factors (CMFs) and a calibration factor to consider local conditions. This study aims to assess the performance of HSM predictive models when applied to a different condition, such as found on Brazilian roads, by evaluating rural multilane highways. Five divided four-lane highways were segmented and considered following HSM guidelines. To deal with the possible underreporting number of Property Damage Only (PDO) crashes, further investigation was developed for total and Fatal or Injury (FI) severity. Calibration factors (Cx) were calculated, 2.62 for total and 2.35 for FI crashes. The goodness of fit (GOF) tests applied were Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), Mean Squared Error (RMSE), R2, and observed versus estimated collisions graphs for different scenarios. The Goodness of Fit measures to assess the HSM performance shows that models for total crashes perform better than FI. Finally, as 2020 was an atypical year in which the COVID-19 pandemic altered traffic patterns worldwide, this study aimed to assess the application of the calibrated prediction model to a sudden disturbance in traffic behavior. The HSM method was applied to 2020 using the Cx obtained from the four previous years. The result showed that for 2020, the observed counts were about 10% lower than the calibrated predictive model estimate of crash frequency for all types of crashes. However, the calibrated prediction of FI crashes was very close to the observed counts.
id USP_27f2cf694acc50d5c7468435d21a6642
oai_identifier_str oai:teses.usp.br:tde-19092023-101215
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in BrazilAvaliação da transferibilidade do modelo preditivo de colisões do Highway Safety Manual para rodovias multipistas rurais no BrasilHighway Safety Manualcrash prediction modelfator de calibração localHighway Safety Manuallocal calibration fatormodelo de previsão de acidentesroad safetysegurança viáriatransferabilitytransferibilidadeThe predictive method presented in the Highway Safety Manual (HSM) estimates the crash frequency by combining a safety performance function (SPF) with crash modification factors (CMFs) and a calibration factor to consider local conditions. This study aims to assess the performance of HSM predictive models when applied to a different condition, such as found on Brazilian roads, by evaluating rural multilane highways. Five divided four-lane highways were segmented and considered following HSM guidelines. To deal with the possible underreporting number of Property Damage Only (PDO) crashes, further investigation was developed for total and Fatal or Injury (FI) severity. Calibration factors (Cx) were calculated, 2.62 for total and 2.35 for FI crashes. The goodness of fit (GOF) tests applied were Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), Mean Squared Error (RMSE), R2, and observed versus estimated collisions graphs for different scenarios. The Goodness of Fit measures to assess the HSM performance shows that models for total crashes perform better than FI. Finally, as 2020 was an atypical year in which the COVID-19 pandemic altered traffic patterns worldwide, this study aimed to assess the application of the calibrated prediction model to a sudden disturbance in traffic behavior. The HSM method was applied to 2020 using the Cx obtained from the four previous years. The result showed that for 2020, the observed counts were about 10% lower than the calibrated predictive model estimate of crash frequency for all types of crashes. However, the calibrated prediction of FI crashes was very close to the observed counts.O método preditivo do Highway Safety Manual (HSM) estima a frequência de acidentes aplicando uma função de desempenho de segurança (SPF), em que o fator de calibração estima o ajuste para as condições locais. Para avaliar a transferibilidade em condições diferentes daquelas em que o modelo foi desenvolvido, este trabalho traz uma nova abordagem por meio da avaliação de rodovias brasileiras pedagiadas. Assim, cinco rodovias rurais de multipistas foram segmentadas e avaliadas conforme recomendação do HSM. Para reduzir o problema da subnotificação de dados de acidentes, o método foi desenvolvido para dados de colisões classificados como fatais ou com vítimas (FI) em comparação com os dados totais. O fator de calibração local (Cx) encontrado foi 2,62 para todos os tipos de acidentes e 2,35 apenas para FI. As medidas de avaliação de qualidade de ajuste (Goodness of Fit - GOF), foram Desvio Médio Absoluto (MAD), Erro Médio Percentual Absoluto (MAPE), Erro Quadrático Médio (RMSE), R2 e gráficos de colisões observadas versus estimadas para diferentes cenários. As medidas de GOF para avaliar o desempenho do HSM mostram que a análise com todos os tipos de severidade das colisões apresenta melhor desempenho em comparação ao FI. Por fim, como 2020 foi um ano atípico, em que o tráfego em todo o mundo foi alterado pela pandemia de COVID-19, este estudo teve também como objetivo avaliar a aplicação do modelo de previsão calibrado a uma perturbação real repentina no comportamento do tráfego. O método do HSM foi aplicado para prever colisões em 2020 com o Cx obtido pelos quatro anos anteriores. O resultado foi que para 2020, o Nobservado foi cerca de 10% inferior ao Nprevisto calibrado para todos os tipos de acidentes. No entanto, a previsão calibrada de colisões de FI foi muito próxima da contagem observada.Biblioteca Digitais de Teses e Dissertações da USPLarocca, Ana Paula CamargoMendes, Olga Beatriz Barbosa2023-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18144/tde-19092023-101215/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-21T14:16:02Zoai:teses.usp.br:tde-19092023-101215Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-21T14:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
Avaliação da transferibilidade do modelo preditivo de colisões do Highway Safety Manual para rodovias multipistas rurais no Brasil
title Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
spellingShingle Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
Mendes, Olga Beatriz Barbosa
Highway Safety Manual
crash prediction model
fator de calibração local
Highway Safety Manual
local calibration fator
modelo de previsão de acidentes
road safety
segurança viária
transferability
transferibilidade
title_short Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
title_full Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
title_fullStr Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
title_full_unstemmed Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
title_sort Assessing the transferability of the Highway Safety Manual crash prediction model for divided rural multilane highways in Brazil
author Mendes, Olga Beatriz Barbosa
author_facet Mendes, Olga Beatriz Barbosa
author_role author
dc.contributor.none.fl_str_mv Larocca, Ana Paula Camargo
dc.contributor.author.fl_str_mv Mendes, Olga Beatriz Barbosa
dc.subject.por.fl_str_mv Highway Safety Manual
crash prediction model
fator de calibração local
Highway Safety Manual
local calibration fator
modelo de previsão de acidentes
road safety
segurança viária
transferability
transferibilidade
topic Highway Safety Manual
crash prediction model
fator de calibração local
Highway Safety Manual
local calibration fator
modelo de previsão de acidentes
road safety
segurança viária
transferability
transferibilidade
description The predictive method presented in the Highway Safety Manual (HSM) estimates the crash frequency by combining a safety performance function (SPF) with crash modification factors (CMFs) and a calibration factor to consider local conditions. This study aims to assess the performance of HSM predictive models when applied to a different condition, such as found on Brazilian roads, by evaluating rural multilane highways. Five divided four-lane highways were segmented and considered following HSM guidelines. To deal with the possible underreporting number of Property Damage Only (PDO) crashes, further investigation was developed for total and Fatal or Injury (FI) severity. Calibration factors (Cx) were calculated, 2.62 for total and 2.35 for FI crashes. The goodness of fit (GOF) tests applied were Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), Mean Squared Error (RMSE), R2, and observed versus estimated collisions graphs for different scenarios. The Goodness of Fit measures to assess the HSM performance shows that models for total crashes perform better than FI. Finally, as 2020 was an atypical year in which the COVID-19 pandemic altered traffic patterns worldwide, this study aimed to assess the application of the calibrated prediction model to a sudden disturbance in traffic behavior. The HSM method was applied to 2020 using the Cx obtained from the four previous years. The result showed that for 2020, the observed counts were about 10% lower than the calibrated predictive model estimate of crash frequency for all types of crashes. However, the calibrated prediction of FI crashes was very close to the observed counts.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18144/tde-19092023-101215/
url https://www.teses.usp.br/teses/disponiveis/18/18144/tde-19092023-101215/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090871180656640