Blow-up de soluções positivas de equações semilineares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-23022007-103210/ |
Resumo: | Considere o problema de valor inicial e de fronteira \'u IND.t\'= \'delta\'u + f(u) em \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) se x \'PERTENCE A\' \'ômega\', u(x, t) = 0 se x \'PERTENCE A\' \'delta\' \'ômega\', 0 < t < T, onde \'ômega\' é um domínio limitado em \'R POT.n\'com bordo \'C POT.2\', f é continuamente diferenciável com f(s) > 0, e \'fi\' é não-negativa e suave sobre \'ômega\'\'BARRA\' com \'fi\'=0 sobre \'delta\'\'ômega\'. Suponha que a única solução u(x,t) possui blow-up em tempo finito T < \'INFINITO\'. A questão que se coloca é: onde ocorre o blow-up? Neste trabalho provamos que: se \'ômega\'=\'B IND.R\'\'ESTÁ CONTIDO EM\'\'R POT. n\', então o blow-up ocorre apenas em r=0, Além disso, se f(u)=\'u POT.p\'p > 1, então u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) para qualquer 1 < \'gama\'< p, e assim \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. No caso não simétrico onde \'ômega\' é um domínio complexo, provamos que conjunto de blow-up é um subconjunto compacto de \'ômega\'. Se f(u)=\'u POT.p\', p > 1, então u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' e, se n=1,2 ou se n\'< OU=\'3 p\'< OU=\'(n+2)/(n-2), então \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' quando \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'onde \'beta\'= \'(p-1) POT. -1\'. As provas das estimativas essenciais para demonstração desses resultados são feitas utilizando o Princípio do Máximo |
id |
USP_29074922b742997a86856d1bbb1b5c70 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23022007-103210 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Blow-up de soluções positivas de equações semilinearesBlow-up of solutions of the semilinear equationsBlow-upBlow-upEquações semilinearesSemilinear equationsConsidere o problema de valor inicial e de fronteira \'u IND.t\'= \'delta\'u + f(u) em \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) se x \'PERTENCE A\' \'ômega\', u(x, t) = 0 se x \'PERTENCE A\' \'delta\' \'ômega\', 0 < t < T, onde \'ômega\' é um domínio limitado em \'R POT.n\'com bordo \'C POT.2\', f é continuamente diferenciável com f(s) > 0, e \'fi\' é não-negativa e suave sobre \'ômega\'\'BARRA\' com \'fi\'=0 sobre \'delta\'\'ômega\'. Suponha que a única solução u(x,t) possui blow-up em tempo finito T < \'INFINITO\'. A questão que se coloca é: onde ocorre o blow-up? Neste trabalho provamos que: se \'ômega\'=\'B IND.R\'\'ESTÁ CONTIDO EM\'\'R POT. n\', então o blow-up ocorre apenas em r=0, Além disso, se f(u)=\'u POT.p\'p > 1, então u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) para qualquer 1 < \'gama\'< p, e assim \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. No caso não simétrico onde \'ômega\' é um domínio complexo, provamos que conjunto de blow-up é um subconjunto compacto de \'ômega\'. Se f(u)=\'u POT.p\', p > 1, então u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' e, se n=1,2 ou se n\'< OU=\'3 p\'< OU=\'(n+2)/(n-2), então \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' quando \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'onde \'beta\'= \'(p-1) POT. -1\'. As provas das estimativas essenciais para demonstração desses resultados são feitas utilizando o Princípio do MáximoConsider the initial-boundary value problem \'u IND.t\'= \'delta\'u + f(u) in \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) if x \'BELONGS\' \'ômega\', u(x, t) = 0 if x \'BELONGS \' \'\\PARTIAL\' \'ômega\', 0 < t < T, where \'ômega\' is a bounded domain in \'R POT.n\'with \'C POT.2\', f is continuously differentiable with f(s) > 0, and \'fi\' is nonnegative and smooth on \'ômega\'\'BARRA\' with \'fi\'=0 on \'\\PARTIIAL\'\'ômega\'. Assume that the unique solution u(x,t) blows up in finite time T < \'INFINITO\'. The question addressed is: where does the blow-up occur? In this work we prove: if \'ômega\'=\'B IND.R\'\'IS CONTAINED EM\'\'R POT. n\', then blow-up occurs only at r=0, Moreover, if f(u)=\'u POT.p\'p > 1, then u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) for any 1 < \'gama\'< p, and hence \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. In the nonsymmetric case where \'ômega\' is a convex domain, we prove that the blow-up set lies in a compact subset of \'ômega\'. If f(u)=\'u POT.p\', p > 1, then u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' and, if n=1,2 or if n\'< OU=\'3 and p\'< OU=\'(n+2)/(n-2), then \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' where \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'where \'beta\'= \'(p-1) POT. -1\'. Elementary applications of the Maximum Principle are used to prove the essential estimate for the proofs of these results.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, Alexandre Nolasco deAlves, Fernanda Tomé2006-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-23022007-103210/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-23022007-103210Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Blow-up de soluções positivas de equações semilineares Blow-up of solutions of the semilinear equations |
title |
Blow-up de soluções positivas de equações semilineares |
spellingShingle |
Blow-up de soluções positivas de equações semilineares Alves, Fernanda Tomé Blow-up Blow-up Equações semilineares Semilinear equations |
title_short |
Blow-up de soluções positivas de equações semilineares |
title_full |
Blow-up de soluções positivas de equações semilineares |
title_fullStr |
Blow-up de soluções positivas de equações semilineares |
title_full_unstemmed |
Blow-up de soluções positivas de equações semilineares |
title_sort |
Blow-up de soluções positivas de equações semilineares |
author |
Alves, Fernanda Tomé |
author_facet |
Alves, Fernanda Tomé |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carvalho, Alexandre Nolasco de |
dc.contributor.author.fl_str_mv |
Alves, Fernanda Tomé |
dc.subject.por.fl_str_mv |
Blow-up Blow-up Equações semilineares Semilinear equations |
topic |
Blow-up Blow-up Equações semilineares Semilinear equations |
description |
Considere o problema de valor inicial e de fronteira \'u IND.t\'= \'delta\'u + f(u) em \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) se x \'PERTENCE A\' \'ômega\', u(x, t) = 0 se x \'PERTENCE A\' \'delta\' \'ômega\', 0 < t < T, onde \'ômega\' é um domínio limitado em \'R POT.n\'com bordo \'C POT.2\', f é continuamente diferenciável com f(s) > 0, e \'fi\' é não-negativa e suave sobre \'ômega\'\'BARRA\' com \'fi\'=0 sobre \'delta\'\'ômega\'. Suponha que a única solução u(x,t) possui blow-up em tempo finito T < \'INFINITO\'. A questão que se coloca é: onde ocorre o blow-up? Neste trabalho provamos que: se \'ômega\'=\'B IND.R\'\'ESTÁ CONTIDO EM\'\'R POT. n\', então o blow-up ocorre apenas em r=0, Além disso, se f(u)=\'u POT.p\'p > 1, então u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) para qualquer 1 < \'gama\'< p, e assim \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. No caso não simétrico onde \'ômega\' é um domínio complexo, provamos que conjunto de blow-up é um subconjunto compacto de \'ômega\'. Se f(u)=\'u POT.p\', p > 1, então u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' e, se n=1,2 ou se n\'< OU=\'3 p\'< OU=\'(n+2)/(n-2), então \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' quando \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'onde \'beta\'= \'(p-1) POT. -1\'. As provas das estimativas essenciais para demonstração desses resultados são feitas utilizando o Princípio do Máximo |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-03-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-23022007-103210/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-23022007-103210/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809091005946789888 |