An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.

Detalhes bibliográficos
Autor(a) principal: Livia Fernanda Araujo Borges
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/D.3.2021.tde-14022022-100213
Resumo: Petroleum is a natural occurrence of hydrocarbons and inorganic impurities, usually presented in a liquid or gas phase in a system. Some reservoirs rock which stores the hydrocarbon can be separated between two domains: the porous medium and the fracture network which may creates preferential channels that change the equivalent permeability of the medium. Many numerical models have been proposed to simulate fluid flow in naturally fractured reservoirs, however, the representation of the complex geometric characteristics of the fracture network is still an issue nowadays. In this sense, this work proposes an embedded discrete fracture model based on the use of coupling finite elements (CFEs) for modeling fluid flow in naturally fractured porous media. The proposed model is able to couple the initially independent non-matching and overlapping meshes from the fractures and rock matrix via CFEs to enforce the continuity of the pressure field between the meshes through a penalty parameter. The main advantage of the use of this approach is that the implementation of CFEs does not require additional degrees of freedom or special integration procedures for coupling the non-matching meshes. Three sets of 2D numerical examples are performed to validate the proposed approach for modeling the steady-state flow in fractured porous medium. The first set of numerical examples focused on the influence of the natural fractures position and the penalty parameter magnitude. In the second set of examples, a study of mesh refinement is performed considering fracture intersections in order to assess the capability of the proposed model to account for the contribution of each discontinuity to the pressure field. The last set of numerical examples presents the simulation of a complex naturally fractured porous medium with vug pore spaces. In conclusion with the results obtained: (i) the coarse meshes presents good results in comparison with refined meshes; (ii) a ratio of porous media and fracture elements between 1 and 2 is acceptable for better results; and (iii) and an specific value of the penalty parameter is applied to predict better behavior of fluid flow in porous medium. Furthermore, the results are in good agreement with reference solutions (the numerical results obtained in previous studies) and the proposed approach demonstrated to be able to capture the main phenomena associated with the fluid transport in fractured porous media.
id USP_290d32b7d863524e78295cc471d8e429
oai_identifier_str oai:teses.usp.br:tde-14022022-100213
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media. Um modelo de fraturas discretas embebidas baseado na utilização de elementos finitos de acoplamento para modelagem de fluxo de fluido em meios porosos naturalmente fraturados. 2021-12-08Luís Antônio Guimarães Bitencourt JúniorOsvaldo Luís ManzoliLeonardo José do Nascimento GuimarãesLeonardo Cabral PereiraLivia Fernanda Araujo BorgesUniversidade de São PauloEngenharia CivilUSPBR Coupling finite element Elemento finito de acoplamento Embedded discrete fracture Fluid flow Fluxo dos fluidos Fraturas Fraturas discretas embebidas Malhas não conformes Meios porosos naturalmente fraturados Naturally fractured porous media Non-matching meshes Petroleum is a natural occurrence of hydrocarbons and inorganic impurities, usually presented in a liquid or gas phase in a system. Some reservoirs rock which stores the hydrocarbon can be separated between two domains: the porous medium and the fracture network which may creates preferential channels that change the equivalent permeability of the medium. Many numerical models have been proposed to simulate fluid flow in naturally fractured reservoirs, however, the representation of the complex geometric characteristics of the fracture network is still an issue nowadays. In this sense, this work proposes an embedded discrete fracture model based on the use of coupling finite elements (CFEs) for modeling fluid flow in naturally fractured porous media. The proposed model is able to couple the initially independent non-matching and overlapping meshes from the fractures and rock matrix via CFEs to enforce the continuity of the pressure field between the meshes through a penalty parameter. The main advantage of the use of this approach is that the implementation of CFEs does not require additional degrees of freedom or special integration procedures for coupling the non-matching meshes. Three sets of 2D numerical examples are performed to validate the proposed approach for modeling the steady-state flow in fractured porous medium. The first set of numerical examples focused on the influence of the natural fractures position and the penalty parameter magnitude. In the second set of examples, a study of mesh refinement is performed considering fracture intersections in order to assess the capability of the proposed model to account for the contribution of each discontinuity to the pressure field. The last set of numerical examples presents the simulation of a complex naturally fractured porous medium with vug pore spaces. In conclusion with the results obtained: (i) the coarse meshes presents good results in comparison with refined meshes; (ii) a ratio of porous media and fracture elements between 1 and 2 is acceptable for better results; and (iii) and an specific value of the penalty parameter is applied to predict better behavior of fluid flow in porous medium. Furthermore, the results are in good agreement with reference solutions (the numerical results obtained in previous studies) and the proposed approach demonstrated to be able to capture the main phenomena associated with the fluid transport in fractured porous media. Petróleo é uma ocorrência natural de hidrocarbonetos e impurezas inorgânicas, geralmente presente em fase líquida ou gasosa em um sistema. Algumas rochas reservatório que alocam os hidrocarbonetos podem ser divididas em dois domínios: o meio poroso e a rede de fraturas que cria canais preferenciais de fluxo que altera a permeabilidade equivalente do meio. Vários modelos numéricos têm sido propostos para simular o fluxo de fluido em reservatórios naturalmente fraturados, no entanto, a representação de características complexas da geometria da rede de fraturas ainda é um desafio nos dias de hoje. Neste contexto, este trabalho propõe um modelo de fraturas discretas embebidas baseado na utilização de elementos finitos de acoplamento (EFA) para modelar fluxo de fluido em meios porosos naturalmente fraturados. O modelo proposto é capaz de acoplar inicialmente as malhas independentes não conformes e sobrepostas da fratura e da matriz rochosa via EFAs para impor a continuidade do campo de pressão entre as malhas por meio de um parâmetro de penalidade. A principal vantagem na utilização dessa técnica é que a implementação dos EFAs não requer graus de liberdade adicionais ou processos de integração especiais para acoplar as malhas não conformes. Três conjuntos de exemplos numéricos 2D são performados a fim de validar o esquema proposto para modelar fluxo de fluido hidrostático em meios porosos fraturados. O primeiro conjunto de exemplo numérico é focado na influência da posição das fraturas naturais e na magnitude do parâmetro de penalidade. No segundo conjunto de exemplos, um estudo de refinamento de malha é feito considerando intersecções de fraturas a fim de estudar a capacidade do modelo proposto de contabilizar a contribuição de cada descontinuidade no campo de pressão. O último conjunto de exemplos apresenta a simulação de um complexo meio poroso naturalmente fraturado contendo vugs. A conclusão dos resultados obtidos são: (i) as malhas grosseiras apresentam bons resultados em comparação com as malhas refinadas; (ii) a razão dos elementos do meio poroso e da fratura entre 1 e 2 é aceitável para melhores resultados; e (iii) um valor específico do parâmetro de penalidade é aplicado para prever um melhor comportamento do fluxo de fluido no meio poroso. Além disso, os resultados obtidos estão em boa concordância com as soluções de referência (os resultados numéricos obtidos em estudos anteriores) e o esquema proposto demonstra habilidade para capturar os principais fenômenos associados com o transporte de fluido em meios porosos fraturados. https://doi.org/10.11606/D.3.2021.tde-14022022-100213info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T18:55:20Zoai:teses.usp.br:tde-14022022-100213Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T12:38:14.726001Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.en.fl_str_mv An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
dc.title.alternative.pt.fl_str_mv Um modelo de fraturas discretas embebidas baseado na utilização de elementos finitos de acoplamento para modelagem de fluxo de fluido em meios porosos naturalmente fraturados.
title An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
spellingShingle An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
Livia Fernanda Araujo Borges
title_short An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
title_full An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
title_fullStr An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
title_full_unstemmed An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
title_sort An embedded discrete fracture model based on the use of coupling finite elements for modeling fluid flow in naturally fractured porous media.
author Livia Fernanda Araujo Borges
author_facet Livia Fernanda Araujo Borges
author_role author
dc.contributor.advisor1.fl_str_mv Luís Antônio Guimarães Bitencourt Júnior
dc.contributor.advisor-co1.fl_str_mv Osvaldo Luís Manzoli
dc.contributor.referee1.fl_str_mv Leonardo José do Nascimento Guimarães
dc.contributor.referee2.fl_str_mv Leonardo Cabral Pereira
dc.contributor.author.fl_str_mv Livia Fernanda Araujo Borges
contributor_str_mv Luís Antônio Guimarães Bitencourt Júnior
Osvaldo Luís Manzoli
Leonardo José do Nascimento Guimarães
Leonardo Cabral Pereira
description Petroleum is a natural occurrence of hydrocarbons and inorganic impurities, usually presented in a liquid or gas phase in a system. Some reservoirs rock which stores the hydrocarbon can be separated between two domains: the porous medium and the fracture network which may creates preferential channels that change the equivalent permeability of the medium. Many numerical models have been proposed to simulate fluid flow in naturally fractured reservoirs, however, the representation of the complex geometric characteristics of the fracture network is still an issue nowadays. In this sense, this work proposes an embedded discrete fracture model based on the use of coupling finite elements (CFEs) for modeling fluid flow in naturally fractured porous media. The proposed model is able to couple the initially independent non-matching and overlapping meshes from the fractures and rock matrix via CFEs to enforce the continuity of the pressure field between the meshes through a penalty parameter. The main advantage of the use of this approach is that the implementation of CFEs does not require additional degrees of freedom or special integration procedures for coupling the non-matching meshes. Three sets of 2D numerical examples are performed to validate the proposed approach for modeling the steady-state flow in fractured porous medium. The first set of numerical examples focused on the influence of the natural fractures position and the penalty parameter magnitude. In the second set of examples, a study of mesh refinement is performed considering fracture intersections in order to assess the capability of the proposed model to account for the contribution of each discontinuity to the pressure field. The last set of numerical examples presents the simulation of a complex naturally fractured porous medium with vug pore spaces. In conclusion with the results obtained: (i) the coarse meshes presents good results in comparison with refined meshes; (ii) a ratio of porous media and fracture elements between 1 and 2 is acceptable for better results; and (iii) and an specific value of the penalty parameter is applied to predict better behavior of fluid flow in porous medium. Furthermore, the results are in good agreement with reference solutions (the numerical results obtained in previous studies) and the proposed approach demonstrated to be able to capture the main phenomena associated with the fluid transport in fractured porous media.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/D.3.2021.tde-14022022-100213
url https://doi.org/10.11606/D.3.2021.tde-14022022-100213
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Engenharia Civil
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794502725134712832