Robustecendo a distribuição normal

Detalhes bibliográficos
Autor(a) principal: Cavalcante, Marcos Rafael Nogueira
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/
Resumo: Esta dissertação tem como objetivo o estudo da distribuição ``slash\'\', considerando seus casos simétrico e assimétrico univariados. Serão apresentadas propriedades probabilísticas e inferenciais dessa distribuição, assim como peculiaridades e problemas. Para serem feitas inferências será considerado o enfoque clássico através do uso dos métodos dos momentos e máxima verossimilhança. São apresentados também os cálculos para a obtenção destes estimadores. Nos casos onde estes estimadores não podem ser obtidos algebricamente foram utilizados métodos computacionais, através da implementação do algoritmo EM. Para isto, foi utilizado o software R e os comandos estão no apêndice. No caso dos estimadores de máxima verossimilhança será implementado o método de Louis para estimar os elementos da matriz de informação de Fisher. Foram realizados estudos de simulação e aplicações para dados reais. Nas aplicações foi analisado o modelo de regressão linear simples, onde foi considerado que os erros seguem distribuição slash assimétrica.
id USP_2929a3b9d9538b6fc1c77d752212a186
oai_identifier_str oai:teses.usp.br:tde-24032016-153903
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Robustecendo a distribuição normalRobustifying the normal distributionDistribuição slashDistribuição slash assimétricaDistribution slashDistribution slash asymmetricalEsta dissertação tem como objetivo o estudo da distribuição ``slash\'\', considerando seus casos simétrico e assimétrico univariados. Serão apresentadas propriedades probabilísticas e inferenciais dessa distribuição, assim como peculiaridades e problemas. Para serem feitas inferências será considerado o enfoque clássico através do uso dos métodos dos momentos e máxima verossimilhança. São apresentados também os cálculos para a obtenção destes estimadores. Nos casos onde estes estimadores não podem ser obtidos algebricamente foram utilizados métodos computacionais, através da implementação do algoritmo EM. Para isto, foi utilizado o software R e os comandos estão no apêndice. No caso dos estimadores de máxima verossimilhança será implementado o método de Louis para estimar os elementos da matriz de informação de Fisher. Foram realizados estudos de simulação e aplicações para dados reais. Nas aplicações foi analisado o modelo de regressão linear simples, onde foi considerado que os erros seguem distribuição slash assimétrica.This dissertation aims at studying the ``slash\'\' distribution considering its symmetric and asymmetric versions. We present probabilistic as well as inferential aspects of this distribution, including peculiarities and problems related to model fitting. The classical approach based on maximum likelihood estimation is used. Moments estimation is also considered as starting values for the maximum likelihood estimation. The implementation of the EM algorithm is developed for the implementation of the likelihood approach. For this implementation software R was used and codes required are presented in the Appendix. As a byproduct of the EM algorithm, Louis method is considered for estimating the Fisher information matrix which can be used for computing large sample intervals for model parameters. Extensions for a simple regression model is considered. Simulation studies are presented illustrating the performance of the estimation approach considered. Results of real data analysis indicate that the methodology can perform well in applied scenarios.Biblioteca Digitais de Teses e Dissertações da USPBolfarine, HelenoCavalcante, Marcos Rafael Nogueira2015-11-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T20:43:02Zoai:teses.usp.br:tde-24032016-153903Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T20:43:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Robustecendo a distribuição normal
Robustifying the normal distribution
title Robustecendo a distribuição normal
spellingShingle Robustecendo a distribuição normal
Cavalcante, Marcos Rafael Nogueira
Distribuição slash
Distribuição slash assimétrica
Distribution slash
Distribution slash asymmetrical
title_short Robustecendo a distribuição normal
title_full Robustecendo a distribuição normal
title_fullStr Robustecendo a distribuição normal
title_full_unstemmed Robustecendo a distribuição normal
title_sort Robustecendo a distribuição normal
author Cavalcante, Marcos Rafael Nogueira
author_facet Cavalcante, Marcos Rafael Nogueira
author_role author
dc.contributor.none.fl_str_mv Bolfarine, Heleno
dc.contributor.author.fl_str_mv Cavalcante, Marcos Rafael Nogueira
dc.subject.por.fl_str_mv Distribuição slash
Distribuição slash assimétrica
Distribution slash
Distribution slash asymmetrical
topic Distribuição slash
Distribuição slash assimétrica
Distribution slash
Distribution slash asymmetrical
description Esta dissertação tem como objetivo o estudo da distribuição ``slash\'\', considerando seus casos simétrico e assimétrico univariados. Serão apresentadas propriedades probabilísticas e inferenciais dessa distribuição, assim como peculiaridades e problemas. Para serem feitas inferências será considerado o enfoque clássico através do uso dos métodos dos momentos e máxima verossimilhança. São apresentados também os cálculos para a obtenção destes estimadores. Nos casos onde estes estimadores não podem ser obtidos algebricamente foram utilizados métodos computacionais, através da implementação do algoritmo EM. Para isto, foi utilizado o software R e os comandos estão no apêndice. No caso dos estimadores de máxima verossimilhança será implementado o método de Louis para estimar os elementos da matriz de informação de Fisher. Foram realizados estudos de simulação e aplicações para dados reais. Nas aplicações foi analisado o modelo de regressão linear simples, onde foi considerado que os erros seguem distribuição slash assimétrica.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257299305889792