Robustecendo a distribuição normal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/ |
Resumo: | Esta dissertação tem como objetivo o estudo da distribuição ``slash\'\', considerando seus casos simétrico e assimétrico univariados. Serão apresentadas propriedades probabilísticas e inferenciais dessa distribuição, assim como peculiaridades e problemas. Para serem feitas inferências será considerado o enfoque clássico através do uso dos métodos dos momentos e máxima verossimilhança. São apresentados também os cálculos para a obtenção destes estimadores. Nos casos onde estes estimadores não podem ser obtidos algebricamente foram utilizados métodos computacionais, através da implementação do algoritmo EM. Para isto, foi utilizado o software R e os comandos estão no apêndice. No caso dos estimadores de máxima verossimilhança será implementado o método de Louis para estimar os elementos da matriz de informação de Fisher. Foram realizados estudos de simulação e aplicações para dados reais. Nas aplicações foi analisado o modelo de regressão linear simples, onde foi considerado que os erros seguem distribuição slash assimétrica. |
id |
USP_2929a3b9d9538b6fc1c77d752212a186 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24032016-153903 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Robustecendo a distribuição normalRobustifying the normal distributionDistribuição slashDistribuição slash assimétricaDistribution slashDistribution slash asymmetricalEsta dissertação tem como objetivo o estudo da distribuição ``slash\'\', considerando seus casos simétrico e assimétrico univariados. Serão apresentadas propriedades probabilísticas e inferenciais dessa distribuição, assim como peculiaridades e problemas. Para serem feitas inferências será considerado o enfoque clássico através do uso dos métodos dos momentos e máxima verossimilhança. São apresentados também os cálculos para a obtenção destes estimadores. Nos casos onde estes estimadores não podem ser obtidos algebricamente foram utilizados métodos computacionais, através da implementação do algoritmo EM. Para isto, foi utilizado o software R e os comandos estão no apêndice. No caso dos estimadores de máxima verossimilhança será implementado o método de Louis para estimar os elementos da matriz de informação de Fisher. Foram realizados estudos de simulação e aplicações para dados reais. Nas aplicações foi analisado o modelo de regressão linear simples, onde foi considerado que os erros seguem distribuição slash assimétrica.This dissertation aims at studying the ``slash\'\' distribution considering its symmetric and asymmetric versions. We present probabilistic as well as inferential aspects of this distribution, including peculiarities and problems related to model fitting. The classical approach based on maximum likelihood estimation is used. Moments estimation is also considered as starting values for the maximum likelihood estimation. The implementation of the EM algorithm is developed for the implementation of the likelihood approach. For this implementation software R was used and codes required are presented in the Appendix. As a byproduct of the EM algorithm, Louis method is considered for estimating the Fisher information matrix which can be used for computing large sample intervals for model parameters. Extensions for a simple regression model is considered. Simulation studies are presented illustrating the performance of the estimation approach considered. Results of real data analysis indicate that the methodology can perform well in applied scenarios.Biblioteca Digitais de Teses e Dissertações da USPBolfarine, HelenoCavalcante, Marcos Rafael Nogueira2015-11-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T20:43:02Zoai:teses.usp.br:tde-24032016-153903Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T20:43:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Robustecendo a distribuição normal Robustifying the normal distribution |
title |
Robustecendo a distribuição normal |
spellingShingle |
Robustecendo a distribuição normal Cavalcante, Marcos Rafael Nogueira Distribuição slash Distribuição slash assimétrica Distribution slash Distribution slash asymmetrical |
title_short |
Robustecendo a distribuição normal |
title_full |
Robustecendo a distribuição normal |
title_fullStr |
Robustecendo a distribuição normal |
title_full_unstemmed |
Robustecendo a distribuição normal |
title_sort |
Robustecendo a distribuição normal |
author |
Cavalcante, Marcos Rafael Nogueira |
author_facet |
Cavalcante, Marcos Rafael Nogueira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bolfarine, Heleno |
dc.contributor.author.fl_str_mv |
Cavalcante, Marcos Rafael Nogueira |
dc.subject.por.fl_str_mv |
Distribuição slash Distribuição slash assimétrica Distribution slash Distribution slash asymmetrical |
topic |
Distribuição slash Distribuição slash assimétrica Distribution slash Distribution slash asymmetrical |
description |
Esta dissertação tem como objetivo o estudo da distribuição ``slash\'\', considerando seus casos simétrico e assimétrico univariados. Serão apresentadas propriedades probabilísticas e inferenciais dessa distribuição, assim como peculiaridades e problemas. Para serem feitas inferências será considerado o enfoque clássico através do uso dos métodos dos momentos e máxima verossimilhança. São apresentados também os cálculos para a obtenção destes estimadores. Nos casos onde estes estimadores não podem ser obtidos algebricamente foram utilizados métodos computacionais, através da implementação do algoritmo EM. Para isto, foi utilizado o software R e os comandos estão no apêndice. No caso dos estimadores de máxima verossimilhança será implementado o método de Louis para estimar os elementos da matriz de informação de Fisher. Foram realizados estudos de simulação e aplicações para dados reais. Nas aplicações foi analisado o modelo de regressão linear simples, onde foi considerado que os erros seguem distribuição slash assimétrica. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24032016-153903/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257299305889792 |