Modelagem e simulação computacional do crescimento de tumores in vitro

Detalhes bibliográficos
Autor(a) principal: Costa, Flávio Henrique Sant'Ana
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/
Resumo: O crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células.
id USP_2b25ceb05db1ba6583f674986c93c07f
oai_identifier_str oai:teses.usp.br:tde-28062012-150314
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelagem e simulação computacional do crescimento de tumores in vitroModelling and computational simulation of in vitro tumor growthcrescimento de tumoresdynamical Monte Carlomathematical modellingmodelagem matemáticaMonte Carlo dinâmicotumor growthO crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células.Tumor growth has been calling attention of physicists and mathematicians for more than sixty years. However, cross-talking with biologists and the interplay between theory and experiment have emerged just recently. Phenomenological equations and computational simulations are still the common toolbox among all the models we know. Thus, in this work, we have studied the problem of monolayer tumor growth through the experimental, theoretical and computational approaches, enhancing the interaction between theory and experiment. We cultivate HeLa (human cervical carcinoma), HCT-15 (human colorectal adenocarcinoma), NIH-HN-13 (human squamous cell carcinoma) and U-251 (human neuronal glioblastoma) cells, calculating the fractal dimension and the behavior of the mean radius with cell number, and analyzing the literature data from HT-29 (human colorectal adenocarcinoma) lineage. Then we modeled the growth rate of mean radius through a sigmoidal curve. The analytical solution of this equation allowed us to fit well the experimental data and the obtained parameters were used into dynamical Monte Carlo simulation. To do this, we transform the radius growth rate in number of cells growth rate, which again agreed with the experimental data. The fractal dimensions of the aggregates ranged from 1; 12 df 1; 21, and agree with the literature. New findings were produced: i) the mean radius as a function of the number of cells enabled us to adjust the function Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, differently from widely accepted relation Rc(t) = cNc(t)1=2; and ii) the waiting times in the MCD procedure are log-normally distributed (sometimes Gaussian), unlike the Poisson distribution often used. The lognormal distribution also allowed us to conjecture that a parameter , from the power law relation ht(nT)i / n? T , might caracterize the tumor monolayer growth due to its narrow range 0; 69 0; 81. Our findings led us to conclude that different culture conditions may produce different parameter responses, furthermore, two phenomenona can describe the growth in mesoscopic level: the competition for free space and the cooperation between cells.Biblioteca Digitais de Teses e Dissertações da USPSilva, Marco Antonio Alves daCosta, Flávio Henrique Sant'Ana2012-04-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-28062012-150314Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelagem e simulação computacional do crescimento de tumores in vitro
Modelling and computational simulation of in vitro tumor growth
title Modelagem e simulação computacional do crescimento de tumores in vitro
spellingShingle Modelagem e simulação computacional do crescimento de tumores in vitro
Costa, Flávio Henrique Sant'Ana
crescimento de tumores
dynamical Monte Carlo
mathematical modelling
modelagem matemática
Monte Carlo dinâmico
tumor growth
title_short Modelagem e simulação computacional do crescimento de tumores in vitro
title_full Modelagem e simulação computacional do crescimento de tumores in vitro
title_fullStr Modelagem e simulação computacional do crescimento de tumores in vitro
title_full_unstemmed Modelagem e simulação computacional do crescimento de tumores in vitro
title_sort Modelagem e simulação computacional do crescimento de tumores in vitro
author Costa, Flávio Henrique Sant'Ana
author_facet Costa, Flávio Henrique Sant'Ana
author_role author
dc.contributor.none.fl_str_mv Silva, Marco Antonio Alves da
dc.contributor.author.fl_str_mv Costa, Flávio Henrique Sant'Ana
dc.subject.por.fl_str_mv crescimento de tumores
dynamical Monte Carlo
mathematical modelling
modelagem matemática
Monte Carlo dinâmico
tumor growth
topic crescimento de tumores
dynamical Monte Carlo
mathematical modelling
modelagem matemática
Monte Carlo dinâmico
tumor growth
description O crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células.
publishDate 2012
dc.date.none.fl_str_mv 2012-04-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/
url http://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256540559441920