Modelagem e simulação computacional do crescimento de tumores in vitro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/ |
Resumo: | O crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células. |
id |
USP_2b25ceb05db1ba6583f674986c93c07f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28062012-150314 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelagem e simulação computacional do crescimento de tumores in vitroModelling and computational simulation of in vitro tumor growthcrescimento de tumoresdynamical Monte Carlomathematical modellingmodelagem matemáticaMonte Carlo dinâmicotumor growthO crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células.Tumor growth has been calling attention of physicists and mathematicians for more than sixty years. However, cross-talking with biologists and the interplay between theory and experiment have emerged just recently. Phenomenological equations and computational simulations are still the common toolbox among all the models we know. Thus, in this work, we have studied the problem of monolayer tumor growth through the experimental, theoretical and computational approaches, enhancing the interaction between theory and experiment. We cultivate HeLa (human cervical carcinoma), HCT-15 (human colorectal adenocarcinoma), NIH-HN-13 (human squamous cell carcinoma) and U-251 (human neuronal glioblastoma) cells, calculating the fractal dimension and the behavior of the mean radius with cell number, and analyzing the literature data from HT-29 (human colorectal adenocarcinoma) lineage. Then we modeled the growth rate of mean radius through a sigmoidal curve. The analytical solution of this equation allowed us to fit well the experimental data and the obtained parameters were used into dynamical Monte Carlo simulation. To do this, we transform the radius growth rate in number of cells growth rate, which again agreed with the experimental data. The fractal dimensions of the aggregates ranged from 1; 12 df 1; 21, and agree with the literature. New findings were produced: i) the mean radius as a function of the number of cells enabled us to adjust the function Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, differently from widely accepted relation Rc(t) = cNc(t)1=2; and ii) the waiting times in the MCD procedure are log-normally distributed (sometimes Gaussian), unlike the Poisson distribution often used. The lognormal distribution also allowed us to conjecture that a parameter , from the power law relation ht(nT)i / n? T , might caracterize the tumor monolayer growth due to its narrow range 0; 69 0; 81. Our findings led us to conclude that different culture conditions may produce different parameter responses, furthermore, two phenomenona can describe the growth in mesoscopic level: the competition for free space and the cooperation between cells.Biblioteca Digitais de Teses e Dissertações da USPSilva, Marco Antonio Alves daCosta, Flávio Henrique Sant'Ana2012-04-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-28062012-150314Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelagem e simulação computacional do crescimento de tumores in vitro Modelling and computational simulation of in vitro tumor growth |
title |
Modelagem e simulação computacional do crescimento de tumores in vitro |
spellingShingle |
Modelagem e simulação computacional do crescimento de tumores in vitro Costa, Flávio Henrique Sant'Ana crescimento de tumores dynamical Monte Carlo mathematical modelling modelagem matemática Monte Carlo dinâmico tumor growth |
title_short |
Modelagem e simulação computacional do crescimento de tumores in vitro |
title_full |
Modelagem e simulação computacional do crescimento de tumores in vitro |
title_fullStr |
Modelagem e simulação computacional do crescimento de tumores in vitro |
title_full_unstemmed |
Modelagem e simulação computacional do crescimento de tumores in vitro |
title_sort |
Modelagem e simulação computacional do crescimento de tumores in vitro |
author |
Costa, Flávio Henrique Sant'Ana |
author_facet |
Costa, Flávio Henrique Sant'Ana |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Marco Antonio Alves da |
dc.contributor.author.fl_str_mv |
Costa, Flávio Henrique Sant'Ana |
dc.subject.por.fl_str_mv |
crescimento de tumores dynamical Monte Carlo mathematical modelling modelagem matemática Monte Carlo dinâmico tumor growth |
topic |
crescimento de tumores dynamical Monte Carlo mathematical modelling modelagem matemática Monte Carlo dinâmico tumor growth |
description |
O crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/ |
url |
http://www.teses.usp.br/teses/disponiveis/60/60136/tde-28062012-150314/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256540559441920 |