\"Dinâmicas autoregressivas em econofísica\"

Detalhes bibliográficos
Autor(a) principal: Favaro, Guilherme Martinatti
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23032007-101512/
Resumo: Neste trabalho, fazemos uma breve introdução à Econofísica e às grandezas estatísticas relevantes para o estudo de um ativo financeiro. Estas grandezas são estudadas detalhadamente para o índice NYSE Composto. Determinamos o tempo de autocorrelação e o espectro de potência, cujos resultados indicam a presença de uma correlação de curto alcance. Através do expoente de Hurst, investigamos o tipo de correlação presente e detectamos a presença de multifractalidade. A volatilidade do índice NYSE mostrou-se análoga a um processo de Wiener. Por outro lado, a função densidade de probabilidade do índice NYSE foi ajustada por uma distribuição de Lévy simétrica com alpha = 1,47. Apresentamos os modelos de variância autoregressiva ARCH e GARCH. Em particular, focalizamos o modelo Markoviano GARCH(1,1). Este modelo tem três parâmetros de controle. Mostramos que, para o índice NYSE, o uso do tempo de autocorrelação na determinação deste conjunto de parâmetros de controle não é a melhor escolha. Resultados muito mais satisfatórios são obtidos se utilizarmos o sexto momento padronizado, uma vez que o ganho no ajuste da função de autocorrelação temporal é muito mais expressivo. A proposta de utilização do sexto momento é robusta e se aplica tanto ao modelo GARCH Gaussiano quanto ao modelo GARCH Exponencial. Desenvolvemos uma técnica de expansão em série para obter o sexto momento padronizado em função dos três parâmetros de controle. Obtivemos uma expressão analítica exata para a curtose do modelo GARCH Exponencial. Ambas as versões Gaussiana e Exponencial apresentam um desempenho equivalente na descrição da função densidade de probabilidade e da função de autocorrelação temporal. Porém, no que tange às leis de escala temporal, medidas através da probabilidade de retorno à origem, o modelo Exponencial tem, clara e inequivocamente, um melhor desempenho que o modelo Gaussiano, pois apresenta um expoente da lei de escala temporal em bom acordo com o expoente do índice NYSE.
id USP_2bb7f698e4539c8f56bcb77cb29cbd11
oai_identifier_str oai:teses.usp.br:tde-23032007-101512
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling \"Dinâmicas autoregressivas em econofísica\"\"Autoregressive dynamics in Econophysics\"autoregressive dynamicsdinâmicas autoregressivaseconofísicaeconophysicsGARCH processesprocessos GARCHNeste trabalho, fazemos uma breve introdução à Econofísica e às grandezas estatísticas relevantes para o estudo de um ativo financeiro. Estas grandezas são estudadas detalhadamente para o índice NYSE Composto. Determinamos o tempo de autocorrelação e o espectro de potência, cujos resultados indicam a presença de uma correlação de curto alcance. Através do expoente de Hurst, investigamos o tipo de correlação presente e detectamos a presença de multifractalidade. A volatilidade do índice NYSE mostrou-se análoga a um processo de Wiener. Por outro lado, a função densidade de probabilidade do índice NYSE foi ajustada por uma distribuição de Lévy simétrica com alpha = 1,47. Apresentamos os modelos de variância autoregressiva ARCH e GARCH. Em particular, focalizamos o modelo Markoviano GARCH(1,1). Este modelo tem três parâmetros de controle. Mostramos que, para o índice NYSE, o uso do tempo de autocorrelação na determinação deste conjunto de parâmetros de controle não é a melhor escolha. Resultados muito mais satisfatórios são obtidos se utilizarmos o sexto momento padronizado, uma vez que o ganho no ajuste da função de autocorrelação temporal é muito mais expressivo. A proposta de utilização do sexto momento é robusta e se aplica tanto ao modelo GARCH Gaussiano quanto ao modelo GARCH Exponencial. Desenvolvemos uma técnica de expansão em série para obter o sexto momento padronizado em função dos três parâmetros de controle. Obtivemos uma expressão analítica exata para a curtose do modelo GARCH Exponencial. Ambas as versões Gaussiana e Exponencial apresentam um desempenho equivalente na descrição da função densidade de probabilidade e da função de autocorrelação temporal. Porém, no que tange às leis de escala temporal, medidas através da probabilidade de retorno à origem, o modelo Exponencial tem, clara e inequivocamente, um melhor desempenho que o modelo Gaussiano, pois apresenta um expoente da lei de escala temporal em bom acordo com o expoente do índice NYSE.In this thesis, we briefly give an introduction to Econophysics and discuss some important statistical quantities used in the study of a financial asset. This quantities are meticulously studied for the NYSE Composite Index. For its time series, we determine the time autocorrelation and the power spectrum, which show the presence of a short range correlation. By means of the Hurst exponent, we investigate the kind of autocorrelation which is present and we detected the presence of multifractality. The volatility of the NYSE Index show a behavior analogous to a Wiener process. On the other hand, the probability density function was adjusted by a symmetric Lévy distribuition with alpha = 1.47. We present the variance autoregressive ARCH and GARCH models. More specifically, we focus on the Markovian GARCH(1,1) model. This model has three control parameters. We show that, for the NYSE Index, the use of the time autocorrelation to determinate the set of control parameters is not the best choice. Instead, results much more reasonable are obtained if the standardized sixth moment is used, as can be seen by the adjust of the time autocorrelation function. The proposal of the sixth moment is robust and applies for both the Gaussian and the Exponential GARCH models. We developed a series expansion technique to get the standardized sixth moment as a function of the three control parameters. We found an exact analytic expression for the kurtosis of the Exponential GARCH model. Both the Gaussian and the Exponential versions exhibit an equivalent performance in the description of the probability density function and the time autocorrelation function. However, with respect to the time scaling laws (measured by the probability of return to the origin) the Exponential model shows, in a clear and unequivocal way, a better performance than the Gaussian model, since it gives a time horizon exponent much more close to the real NYSE exponent.Biblioteca Digitais de Teses e Dissertações da USPOnody, Roberto NicolauFavaro, Guilherme Martinatti2007-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-23032007-101512/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-23032007-101512Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv \"Dinâmicas autoregressivas em econofísica\"
\"Autoregressive dynamics in Econophysics\"
title \"Dinâmicas autoregressivas em econofísica\"
spellingShingle \"Dinâmicas autoregressivas em econofísica\"
Favaro, Guilherme Martinatti
autoregressive dynamics
dinâmicas autoregressivas
econofísica
econophysics
GARCH processes
processos GARCH
title_short \"Dinâmicas autoregressivas em econofísica\"
title_full \"Dinâmicas autoregressivas em econofísica\"
title_fullStr \"Dinâmicas autoregressivas em econofísica\"
title_full_unstemmed \"Dinâmicas autoregressivas em econofísica\"
title_sort \"Dinâmicas autoregressivas em econofísica\"
author Favaro, Guilherme Martinatti
author_facet Favaro, Guilherme Martinatti
author_role author
dc.contributor.none.fl_str_mv Onody, Roberto Nicolau
dc.contributor.author.fl_str_mv Favaro, Guilherme Martinatti
dc.subject.por.fl_str_mv autoregressive dynamics
dinâmicas autoregressivas
econofísica
econophysics
GARCH processes
processos GARCH
topic autoregressive dynamics
dinâmicas autoregressivas
econofísica
econophysics
GARCH processes
processos GARCH
description Neste trabalho, fazemos uma breve introdução à Econofísica e às grandezas estatísticas relevantes para o estudo de um ativo financeiro. Estas grandezas são estudadas detalhadamente para o índice NYSE Composto. Determinamos o tempo de autocorrelação e o espectro de potência, cujos resultados indicam a presença de uma correlação de curto alcance. Através do expoente de Hurst, investigamos o tipo de correlação presente e detectamos a presença de multifractalidade. A volatilidade do índice NYSE mostrou-se análoga a um processo de Wiener. Por outro lado, a função densidade de probabilidade do índice NYSE foi ajustada por uma distribuição de Lévy simétrica com alpha = 1,47. Apresentamos os modelos de variância autoregressiva ARCH e GARCH. Em particular, focalizamos o modelo Markoviano GARCH(1,1). Este modelo tem três parâmetros de controle. Mostramos que, para o índice NYSE, o uso do tempo de autocorrelação na determinação deste conjunto de parâmetros de controle não é a melhor escolha. Resultados muito mais satisfatórios são obtidos se utilizarmos o sexto momento padronizado, uma vez que o ganho no ajuste da função de autocorrelação temporal é muito mais expressivo. A proposta de utilização do sexto momento é robusta e se aplica tanto ao modelo GARCH Gaussiano quanto ao modelo GARCH Exponencial. Desenvolvemos uma técnica de expansão em série para obter o sexto momento padronizado em função dos três parâmetros de controle. Obtivemos uma expressão analítica exata para a curtose do modelo GARCH Exponencial. Ambas as versões Gaussiana e Exponencial apresentam um desempenho equivalente na descrição da função densidade de probabilidade e da função de autocorrelação temporal. Porém, no que tange às leis de escala temporal, medidas através da probabilidade de retorno à origem, o modelo Exponencial tem, clara e inequivocamente, um melhor desempenho que o modelo Gaussiano, pois apresenta um expoente da lei de escala temporal em bom acordo com o expoente do índice NYSE.
publishDate 2007
dc.date.none.fl_str_mv 2007-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23032007-101512/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23032007-101512/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257294102855680