Monte Carlo simulations to investigate light coupling with optical skin phantom

Detalhes bibliográficos
Autor(a) principal: Fortunato, Thereza Cury
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160416/
Resumo: The effects observed during the light interaction with the most varied biological tissues make light an interesting tool for both diagnostic and therapeutic purposes. For a particular biomedical optical technique to be successful, it is essential to know and understand how the light interacts with the target tissue. Experimental measurements, theoretical modeling and computational simulations are widely used to improve the understanding of how light can interact with a tissue. The Monte Carlo simulations are considered important and reliable tools for detailed studies on the light propagation in tissue. It is known that to analyze the propagation of light in biological tissues we should take into account many factors, such as tissue optical properties, light source characteristics, interface roughness and illuminated tissue composition. In this context, in this thesis we used an optimized computational simulation method, Monte Carlo eXtreme (MCX), to predict the changes in the propagation of 630 nm light beam when a layer of a transparent material with different refraction indexes and thicknesses is added between the air and the surface of a homogeneous turbid medium (human dermis phantom) and a multi-layer (human skin phantom). We explored the effects caused by the transparent material when the light beam angle of incidence was varied and also when multiple sources are combined. Lastly, the material´s refractive index was extrapolated in order to obtain a mirror-like object on the skin phantom surface. The simulations demonstrated that the phantom structures and optical properties, as well as the incident light beam geometry (angle of incidence) highly influence the light propagation, and that using a transparent material between the air and the phantom we can create a more uniform field of illumination, however, the observed effects are also dependent on the material thickness and refractive index. A mirror-like object also led to a significant change in the photon flux. The observed results are due, in large part, to the phenomena of refraction and total internal reflection of the light scattered by the phantom. The presented results showed that MCX is a useful tool for more fundamental studies towards a better understanding on the light propagation in biological tissues according to different irradiation strategies. It can also help to path the way to the personalization of light dosimetry dosimetry in clinics.
id USP_2bb8ef46f3d66a6f059bde383c33e38f
oai_identifier_str oai:teses.usp.br:tde-02092021-160416
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Monte Carlo simulations to investigate light coupling with optical skin phantomSimulações de Monte Carlo para investigação de acoplamento de luz a phantom óptico de peleDistribuição de luzFotodiagnósticoFototerapiasLight distributionMeios túrbidosMonte Carlo eXtremeMonte Carlo eXtremeMonte Carlo simulationsPhotodiagnosisPhototherapiesSimulações de Monte CarloTurbid mediaThe effects observed during the light interaction with the most varied biological tissues make light an interesting tool for both diagnostic and therapeutic purposes. For a particular biomedical optical technique to be successful, it is essential to know and understand how the light interacts with the target tissue. Experimental measurements, theoretical modeling and computational simulations are widely used to improve the understanding of how light can interact with a tissue. The Monte Carlo simulations are considered important and reliable tools for detailed studies on the light propagation in tissue. It is known that to analyze the propagation of light in biological tissues we should take into account many factors, such as tissue optical properties, light source characteristics, interface roughness and illuminated tissue composition. In this context, in this thesis we used an optimized computational simulation method, Monte Carlo eXtreme (MCX), to predict the changes in the propagation of 630 nm light beam when a layer of a transparent material with different refraction indexes and thicknesses is added between the air and the surface of a homogeneous turbid medium (human dermis phantom) and a multi-layer (human skin phantom). We explored the effects caused by the transparent material when the light beam angle of incidence was varied and also when multiple sources are combined. Lastly, the material´s refractive index was extrapolated in order to obtain a mirror-like object on the skin phantom surface. The simulations demonstrated that the phantom structures and optical properties, as well as the incident light beam geometry (angle of incidence) highly influence the light propagation, and that using a transparent material between the air and the phantom we can create a more uniform field of illumination, however, the observed effects are also dependent on the material thickness and refractive index. A mirror-like object also led to a significant change in the photon flux. The observed results are due, in large part, to the phenomena of refraction and total internal reflection of the light scattered by the phantom. The presented results showed that MCX is a useful tool for more fundamental studies towards a better understanding on the light propagation in biological tissues according to different irradiation strategies. It can also help to path the way to the personalization of light dosimetry dosimetry in clinics.Os efeitos observados durante a interação da luz com os mais diversos tecidos biológicos tornam a luz uma ferramenta interessante tanto para fins diagnósticos quanto terapêuticos. Para que uma determinada técnica ótica biomédica tenha sucesso, é essencial conhecer e compreender como de com a luz interage com o tecido-alvo. Medidas experimentais, modelagem teórica e simulações computacionais são amplamente utilizadas para melhorar a compreensão de como a luz pode interagir com um tecido. As simulações de Monte Carlo são consideradas ferramentas importantes e confiáveis para estudos detalhados sobre a propagação da luz no tecido. Sabe-se que para analisar a propagação da luz em tecidos biológicos devemos levar em consideração diversos fatores, como propriedades ópticas do tecido, características da fonte de luz, rugosidade da interface e composição do tecido iluminado. Neste contexto, nesta tese foi utilizado um método de simulação computacional otimizado, Monte Carlo eXtreme (MCX), para prever as mudanças na propagação do feixe de luz com o comprimento de onda de 630 nm quando uma camada de um material transparente com diferentes índices de refração e espessuras é adicionada entre o ar e a superfície de um meio túrbido homogêneo (phantom da derme humana) e de um multicamadas (phantom da pele humana). Exploramos os efeitos causados pelo material transparente quando o ângulo de incidência do feixe de luz era variado e quando fontes múltiplas são combinadas. Por último, o índice de refração do material foi extrapolado a fim de obter um objeto semelhante a um espelho na superfície do phantom de pele. As simulações demonstraram que as estruturas e propriedades ópticas do phantom, bem como a geometria do feixe de luz incidente (ângulo de incidência) influenciam fortemente a propagação da luz e que usando um material transparente entre o ar e o phantom podemos criar um campo de iluminação mais uniforme, no entanto, os efeitos observados também dependem da espessura desse material e do índice de refração. O objeto semelhante a espelho também levou a uma mudança significativa no fluxo de fótons. Os resultados observados são devidos, em grande parte, aos fenômenos de refração e reflexão interna total da luz espalhada no phantom. Os resultados apresentados mostraram que o MCX é uma ferramenta útil em estudos mais fundamentais para um melhor entendimento da propagação da luz em tecidos biológicos de acordo com diferentes estratégias de irradiação. Também pode ajudar a traçar o caminho para a personalização da dosimetria da luz na clínica.Biblioteca Digitais de Teses e Dissertações da USPMoriyama, Lilian TanFortunato, Thereza Cury2021-01-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160416/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-13T17:02:03Zoai:teses.usp.br:tde-02092021-160416Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-13T17:02:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Monte Carlo simulations to investigate light coupling with optical skin phantom
Simulações de Monte Carlo para investigação de acoplamento de luz a phantom óptico de pele
title Monte Carlo simulations to investigate light coupling with optical skin phantom
spellingShingle Monte Carlo simulations to investigate light coupling with optical skin phantom
Fortunato, Thereza Cury
Distribuição de luz
Fotodiagnóstico
Fototerapias
Light distribution
Meios túrbidos
Monte Carlo eXtreme
Monte Carlo eXtreme
Monte Carlo simulations
Photodiagnosis
Phototherapies
Simulações de Monte Carlo
Turbid media
title_short Monte Carlo simulations to investigate light coupling with optical skin phantom
title_full Monte Carlo simulations to investigate light coupling with optical skin phantom
title_fullStr Monte Carlo simulations to investigate light coupling with optical skin phantom
title_full_unstemmed Monte Carlo simulations to investigate light coupling with optical skin phantom
title_sort Monte Carlo simulations to investigate light coupling with optical skin phantom
author Fortunato, Thereza Cury
author_facet Fortunato, Thereza Cury
author_role author
dc.contributor.none.fl_str_mv Moriyama, Lilian Tan
dc.contributor.author.fl_str_mv Fortunato, Thereza Cury
dc.subject.por.fl_str_mv Distribuição de luz
Fotodiagnóstico
Fototerapias
Light distribution
Meios túrbidos
Monte Carlo eXtreme
Monte Carlo eXtreme
Monte Carlo simulations
Photodiagnosis
Phototherapies
Simulações de Monte Carlo
Turbid media
topic Distribuição de luz
Fotodiagnóstico
Fototerapias
Light distribution
Meios túrbidos
Monte Carlo eXtreme
Monte Carlo eXtreme
Monte Carlo simulations
Photodiagnosis
Phototherapies
Simulações de Monte Carlo
Turbid media
description The effects observed during the light interaction with the most varied biological tissues make light an interesting tool for both diagnostic and therapeutic purposes. For a particular biomedical optical technique to be successful, it is essential to know and understand how the light interacts with the target tissue. Experimental measurements, theoretical modeling and computational simulations are widely used to improve the understanding of how light can interact with a tissue. The Monte Carlo simulations are considered important and reliable tools for detailed studies on the light propagation in tissue. It is known that to analyze the propagation of light in biological tissues we should take into account many factors, such as tissue optical properties, light source characteristics, interface roughness and illuminated tissue composition. In this context, in this thesis we used an optimized computational simulation method, Monte Carlo eXtreme (MCX), to predict the changes in the propagation of 630 nm light beam when a layer of a transparent material with different refraction indexes and thicknesses is added between the air and the surface of a homogeneous turbid medium (human dermis phantom) and a multi-layer (human skin phantom). We explored the effects caused by the transparent material when the light beam angle of incidence was varied and also when multiple sources are combined. Lastly, the material´s refractive index was extrapolated in order to obtain a mirror-like object on the skin phantom surface. The simulations demonstrated that the phantom structures and optical properties, as well as the incident light beam geometry (angle of incidence) highly influence the light propagation, and that using a transparent material between the air and the phantom we can create a more uniform field of illumination, however, the observed effects are also dependent on the material thickness and refractive index. A mirror-like object also led to a significant change in the photon flux. The observed results are due, in large part, to the phenomena of refraction and total internal reflection of the light scattered by the phantom. The presented results showed that MCX is a useful tool for more fundamental studies towards a better understanding on the light propagation in biological tissues according to different irradiation strategies. It can also help to path the way to the personalization of light dosimetry dosimetry in clinics.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160416/
url https://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160416/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090316660113408