Espaços nos quais todo fechado é um conjunto de pontos fixos
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-020721/ |
Resumo: | Um espaço X é dito ter a propriedade da invariância completa(CIP) se todo subconjunto fechado não vazio de X é um conjunto de pontos fixos. Neste trabalho vemos que a CIP não é preservada por auto-produto de variedades não métricas ou espaços zero-dimensionais. Vemos também condições suficientes para um produto infinito de espaços ter CIP. Mostramos que o produto não enumerável do intervalo unitário (o cubo de Tychonoff) não tem CIP e que o cubo de Hilbert e o cubo de Cantor tem a propriedade da invariância completa com respeito a homeomorfismos (CIPH) |
id |
USP_2bc62ddbd212ce5c7a432409708ffc4b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-020721 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Espaços nos quais todo fechado é um conjunto de pontos fixosnot availableTopologiaUm espaço X é dito ter a propriedade da invariância completa(CIP) se todo subconjunto fechado não vazio de X é um conjunto de pontos fixos. Neste trabalho vemos que a CIP não é preservada por auto-produto de variedades não métricas ou espaços zero-dimensionais. Vemos também condições suficientes para um produto infinito de espaços ter CIP. Mostramos que o produto não enumerável do intervalo unitário (o cubo de Tychonoff) não tem CIP e que o cubo de Hilbert e o cubo de Cantor tem a propriedade da invariância completa com respeito a homeomorfismos (CIPH)A space X is said to have the complete invariance property (CIP) if every nonempty closed subset of X is the fixed point set of some self-mapping of X. In this work we see that CIP need not be preserved by self-products of non-metric manifolds or zero-dimensional spaces. We also see sufficient conditions for an infinite product of spaces to have CIP. We show that uncountable powers of the unit interval do not have CIP and that the Hilbert cube and the Cantor cube hane the complete invariance property with resect to homeomorphisms (CIPH)Biblioteca Digitais de Teses e Dissertações da USPTomita, Artur HideyukiPereira, Irene Castro1998-08-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-020721/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:00:33Zoai:teses.usp.br:tde-20210729-020721Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:00:33Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Espaços nos quais todo fechado é um conjunto de pontos fixos not available |
title |
Espaços nos quais todo fechado é um conjunto de pontos fixos |
spellingShingle |
Espaços nos quais todo fechado é um conjunto de pontos fixos Pereira, Irene Castro Topologia |
title_short |
Espaços nos quais todo fechado é um conjunto de pontos fixos |
title_full |
Espaços nos quais todo fechado é um conjunto de pontos fixos |
title_fullStr |
Espaços nos quais todo fechado é um conjunto de pontos fixos |
title_full_unstemmed |
Espaços nos quais todo fechado é um conjunto de pontos fixos |
title_sort |
Espaços nos quais todo fechado é um conjunto de pontos fixos |
author |
Pereira, Irene Castro |
author_facet |
Pereira, Irene Castro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Tomita, Artur Hideyuki |
dc.contributor.author.fl_str_mv |
Pereira, Irene Castro |
dc.subject.por.fl_str_mv |
Topologia |
topic |
Topologia |
description |
Um espaço X é dito ter a propriedade da invariância completa(CIP) se todo subconjunto fechado não vazio de X é um conjunto de pontos fixos. Neste trabalho vemos que a CIP não é preservada por auto-produto de variedades não métricas ou espaços zero-dimensionais. Vemos também condições suficientes para um produto infinito de espaços ter CIP. Mostramos que o produto não enumerável do intervalo unitário (o cubo de Tychonoff) não tem CIP e que o cubo de Hilbert e o cubo de Cantor tem a propriedade da invariância completa com respeito a homeomorfismos (CIPH) |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-08-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-020721/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-020721/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257207690756096 |