Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados

Detalhes bibliográficos
Autor(a) principal: Paixão, Rafael Soares
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-21072021-163951/
Resumo: Este trabalho de doutorado desenvolve, compara e aplica métodos Monte Carlo via Cadeias de Markov (MCMC) para estimação de parâmetros em modelos GJR-GARCH univariados e multivariados. Especificamente, os seguintes problemas são abordados: (i) concepção de uma abordagem de estimação puramente bayesiana; (ii) desenvolvimento de um método bayesiano para maior eficiência computacional na estimação de parâmetros; e (iii) escolha flexível de distribuições de probabilidade de resíduos para modelos GJR-GARCH. Como resultado das investigações dos problemas mencionados, este trabalho apresenta quatro contribuições. A primeira diz respeito a uma abordagem de inferência bayesiana para modelos GJR-GARCH univariados e multivariados. A segunda consiste no estudo de três distribuições de probabilidade de resíduos, uma delas tendo sido utilizada de forma inovadora para casos multivariados. A terceira combina duas técnicas, o algoritmo Hamiltoniano Monte Carlo (HMC) e o método Zero-Variance, para possibilitar a estimação de parâmetros em modelos GJR-GARCH com maior eficácia dos estimadores, bem como com maior eficiência computacional. Por fim, a quarta apresenta resultados de estudos de simulação e de uma aplicação em dados reais, no contexto de índices de bolsas de valores mundiais, mostram que as contribuições propostas solucionam os problemas abordados eficaz e eficientemente, avançando o estado da arte de modelos GARCH univariados e multivariados.
id USP_2c085dd4efd66df557e3194a70e7e203
oai_identifier_str oai:teses.usp.br:tde-21072021-163951
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariadosZero-Variance method for Hamiltonian Monte Carlo applied to univariate and multivariate GARCH modelsBayesian inferenceGARCHGARCHHamiltonian Monte CarloInferência BayesianaMonte Carlo HamiltonianoZero-varianceZero-varianceEste trabalho de doutorado desenvolve, compara e aplica métodos Monte Carlo via Cadeias de Markov (MCMC) para estimação de parâmetros em modelos GJR-GARCH univariados e multivariados. Especificamente, os seguintes problemas são abordados: (i) concepção de uma abordagem de estimação puramente bayesiana; (ii) desenvolvimento de um método bayesiano para maior eficiência computacional na estimação de parâmetros; e (iii) escolha flexível de distribuições de probabilidade de resíduos para modelos GJR-GARCH. Como resultado das investigações dos problemas mencionados, este trabalho apresenta quatro contribuições. A primeira diz respeito a uma abordagem de inferência bayesiana para modelos GJR-GARCH univariados e multivariados. A segunda consiste no estudo de três distribuições de probabilidade de resíduos, uma delas tendo sido utilizada de forma inovadora para casos multivariados. A terceira combina duas técnicas, o algoritmo Hamiltoniano Monte Carlo (HMC) e o método Zero-Variance, para possibilitar a estimação de parâmetros em modelos GJR-GARCH com maior eficácia dos estimadores, bem como com maior eficiência computacional. Por fim, a quarta apresenta resultados de estudos de simulação e de uma aplicação em dados reais, no contexto de índices de bolsas de valores mundiais, mostram que as contribuições propostas solucionam os problemas abordados eficaz e eficientemente, avançando o estado da arte de modelos GARCH univariados e multivariados.This PhD work develops, compares and applies Monte Carlo Markov Chains (MCMC) methods for parameter estimation in univariate and multivariate GJR-GARCH models. Specifically, the following problems are addressed: (i) conception of a purely bayesian estimation approach; (ii) development of a bayesian method for higher computational efficiency in parameter estimation; and (iii) flexible selection of residual probability distributions for GJR-GARCH models. As a result from the investigations of the aforementioned problems, this work presents four contributions. The first corresponds to a bayesian inference approach for univariate and multivariate GJR-GARCH models. The second consists of studying three residual probability distributions, one of which having been inovatively employed for multivariate cases. The third combines two techniques, namely the Hamiltonian Monte Carlo (HMC) algorithm and the Zero-Variance method, to allow parameter estimation in GJR-GARCH models with higher estimator efficiency, as well as higher computational performance. Finally, the fourth presents results from simulation studies and an application over real-world data, in the context of worldwide stock market indexes, show that the proposed contributions solve the addressed problems effective and efficiently, advancing the state of the art of univariate and multivariate GARCH models.Biblioteca Digitais de Teses e Dissertações da USPEhlers, Ricardo SandesPaixão, Rafael Soares2021-05-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-21072021-163951/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-21T22:46:02Zoai:teses.usp.br:tde-21072021-163951Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-21T22:46:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
Zero-Variance method for Hamiltonian Monte Carlo applied to univariate and multivariate GARCH models
title Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
spellingShingle Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
Paixão, Rafael Soares
Bayesian inference
GARCH
GARCH
Hamiltonian Monte Carlo
Inferência Bayesiana
Monte Carlo Hamiltoniano
Zero-variance
Zero-variance
title_short Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
title_full Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
title_fullStr Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
title_full_unstemmed Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
title_sort Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
author Paixão, Rafael Soares
author_facet Paixão, Rafael Soares
author_role author
dc.contributor.none.fl_str_mv Ehlers, Ricardo Sandes
dc.contributor.author.fl_str_mv Paixão, Rafael Soares
dc.subject.por.fl_str_mv Bayesian inference
GARCH
GARCH
Hamiltonian Monte Carlo
Inferência Bayesiana
Monte Carlo Hamiltoniano
Zero-variance
Zero-variance
topic Bayesian inference
GARCH
GARCH
Hamiltonian Monte Carlo
Inferência Bayesiana
Monte Carlo Hamiltoniano
Zero-variance
Zero-variance
description Este trabalho de doutorado desenvolve, compara e aplica métodos Monte Carlo via Cadeias de Markov (MCMC) para estimação de parâmetros em modelos GJR-GARCH univariados e multivariados. Especificamente, os seguintes problemas são abordados: (i) concepção de uma abordagem de estimação puramente bayesiana; (ii) desenvolvimento de um método bayesiano para maior eficiência computacional na estimação de parâmetros; e (iii) escolha flexível de distribuições de probabilidade de resíduos para modelos GJR-GARCH. Como resultado das investigações dos problemas mencionados, este trabalho apresenta quatro contribuições. A primeira diz respeito a uma abordagem de inferência bayesiana para modelos GJR-GARCH univariados e multivariados. A segunda consiste no estudo de três distribuições de probabilidade de resíduos, uma delas tendo sido utilizada de forma inovadora para casos multivariados. A terceira combina duas técnicas, o algoritmo Hamiltoniano Monte Carlo (HMC) e o método Zero-Variance, para possibilitar a estimação de parâmetros em modelos GJR-GARCH com maior eficácia dos estimadores, bem como com maior eficiência computacional. Por fim, a quarta apresenta resultados de estudos de simulação e de uma aplicação em dados reais, no contexto de índices de bolsas de valores mundiais, mostram que as contribuições propostas solucionam os problemas abordados eficaz e eficientemente, avançando o estado da arte de modelos GARCH univariados e multivariados.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-21072021-163951/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-21072021-163951/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257245064101888