Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/59/59143/tde-05122022-102337/ |
Resumo: | O volume de dados disponíveis aumentou rapidamente nos últimos anos e, com isso, os datasets geralmente acabam tendo muitos atributos irrelevantes que podem dificultar a compreensão humana e até levar a modelos de aprendizado de máquina ruins. É possível lidar com esse problema ordenando os atributos de acordo com suas relevâncias e, se desejado, pode ser aplicado um valor de corte ou a estratégia dos top-k para reduzir o número de atributos, mantendo apenas os mais relevantes. Esta pesquisa aborda esse problema e propõe um novo método que emprega árvores de uma Random Forest para transformar um dataset em uma rede complexa na qual métricas de centralidade são aplicadas para ranquear os atributos. O processo representa cada árvore como um grafo, onde todos os atributos na Árvore de Decisão são vértices e as ligações entre os nós (pai → filho) da árvore são representados por uma aresta ponderada entre os dois respectivos vértices. A união de todos os grafos de árvores individuais leva à rede complexa. Experimentos foram realizados em 97 datasets de classificação e regressão rotulados, com variação nos níveis de ruído dos atributos e dos exemplos. Os resultados mostram que, para redes complexas geradas a partir de Random Forests, as métricas de peso de aresta unitário e out-of-bag apresentaram melhores resultados para datasets de classificação e regressão, respectivamente; as métricas de centralidade tiveram melhor desempenho em redes não orientadas, em geral. É possível concluir que a centralidade do autovetor e a importância dos atributos da Random Forest têm desempenho equivalente. Em outras palavras, não houve diferença estatisticamente significativa entre eles em todas, exceto em uma situação (com 40% de ruído nos exemplos para datasets de regressão), com nível de confiança de 95%. |
id |
USP_2c09ec354e3d1a80931039b7d58ac31f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05122022-102337 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexasRanking of attributes through random forests and centrality metrics in complex networksCentrality measuresComplex networksFeature rankingMétricas de centralidadeRandom forestsRandom forestsRanqueamento de atributosRedes complexasO volume de dados disponíveis aumentou rapidamente nos últimos anos e, com isso, os datasets geralmente acabam tendo muitos atributos irrelevantes que podem dificultar a compreensão humana e até levar a modelos de aprendizado de máquina ruins. É possível lidar com esse problema ordenando os atributos de acordo com suas relevâncias e, se desejado, pode ser aplicado um valor de corte ou a estratégia dos top-k para reduzir o número de atributos, mantendo apenas os mais relevantes. Esta pesquisa aborda esse problema e propõe um novo método que emprega árvores de uma Random Forest para transformar um dataset em uma rede complexa na qual métricas de centralidade são aplicadas para ranquear os atributos. O processo representa cada árvore como um grafo, onde todos os atributos na Árvore de Decisão são vértices e as ligações entre os nós (pai → filho) da árvore são representados por uma aresta ponderada entre os dois respectivos vértices. A união de todos os grafos de árvores individuais leva à rede complexa. Experimentos foram realizados em 97 datasets de classificação e regressão rotulados, com variação nos níveis de ruído dos atributos e dos exemplos. Os resultados mostram que, para redes complexas geradas a partir de Random Forests, as métricas de peso de aresta unitário e out-of-bag apresentaram melhores resultados para datasets de classificação e regressão, respectivamente; as métricas de centralidade tiveram melhor desempenho em redes não orientadas, em geral. É possível concluir que a centralidade do autovetor e a importância dos atributos da Random Forest têm desempenho equivalente. Em outras palavras, não houve diferença estatisticamente significativa entre eles em todas, exceto em uma situação (com 40% de ruído nos exemplos para datasets de regressão), com nível de confiança de 95%.In recent years, the volume of available data has rapidly increased, and datasets commonly end up with many irrelevant features which may disturb human understanding and even lead to poor machine learning models. It is possible to deal with that problem by sorting the features according to their relevancy, and if desirable, either a threshold or the best top-k strategy can be applied to reduce the number of features, keeping only the most relevant ones. This research addresses this problem and proposes a novel method that employs trees from a Random Forest to transform a dataset into a complex network to which centrality measures are applied to rank the features. The process represents each tree as a graph where all features in the Decision Tree are vertices, and the links within the nodes (father → child) of the tree are represented by a weighted edge between the two respective vertices. The union of all graphs from individual trees leads to the complex network. Experiments were performed in 97 labeled classification and regression datasets, with a variation in the feature and example noise levels. Results show that, for complex networks generated from Random Forests, the edge-weight metrics unitary and out-of-bag presented better results for classification and regression datasets, respectively; centrality measures had better performance in non-oriented networks, in general. It is possible to conclude that the eigenvector centrality and the Random Forest feature importance have equivalent performance. In other words, there was no statistically significant difference between them in all except one situation (at 40% noise in the examples for regression datasets), at 95% confidence level.Biblioteca Digitais de Teses e Dissertações da USPBaranauskas, José AugustoLiang, ZhaoCantão, Adriano Henrique2022-09-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59143/tde-05122022-102337/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-12-12T12:22:52Zoai:teses.usp.br:tde-05122022-102337Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-12-12T12:22:52Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas Ranking of attributes through random forests and centrality metrics in complex networks |
title |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas |
spellingShingle |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas Cantão, Adriano Henrique Centrality measures Complex networks Feature ranking Métricas de centralidade Random forests Random forests Ranqueamento de atributos Redes complexas |
title_short |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas |
title_full |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas |
title_fullStr |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas |
title_full_unstemmed |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas |
title_sort |
Ranqueamento de atributos por meio de random forests e métricas de centralidade em redes complexas |
author |
Cantão, Adriano Henrique |
author_facet |
Cantão, Adriano Henrique |
author_role |
author |
dc.contributor.none.fl_str_mv |
Baranauskas, José Augusto Liang, Zhao |
dc.contributor.author.fl_str_mv |
Cantão, Adriano Henrique |
dc.subject.por.fl_str_mv |
Centrality measures Complex networks Feature ranking Métricas de centralidade Random forests Random forests Ranqueamento de atributos Redes complexas |
topic |
Centrality measures Complex networks Feature ranking Métricas de centralidade Random forests Random forests Ranqueamento de atributos Redes complexas |
description |
O volume de dados disponíveis aumentou rapidamente nos últimos anos e, com isso, os datasets geralmente acabam tendo muitos atributos irrelevantes que podem dificultar a compreensão humana e até levar a modelos de aprendizado de máquina ruins. É possível lidar com esse problema ordenando os atributos de acordo com suas relevâncias e, se desejado, pode ser aplicado um valor de corte ou a estratégia dos top-k para reduzir o número de atributos, mantendo apenas os mais relevantes. Esta pesquisa aborda esse problema e propõe um novo método que emprega árvores de uma Random Forest para transformar um dataset em uma rede complexa na qual métricas de centralidade são aplicadas para ranquear os atributos. O processo representa cada árvore como um grafo, onde todos os atributos na Árvore de Decisão são vértices e as ligações entre os nós (pai → filho) da árvore são representados por uma aresta ponderada entre os dois respectivos vértices. A união de todos os grafos de árvores individuais leva à rede complexa. Experimentos foram realizados em 97 datasets de classificação e regressão rotulados, com variação nos níveis de ruído dos atributos e dos exemplos. Os resultados mostram que, para redes complexas geradas a partir de Random Forests, as métricas de peso de aresta unitário e out-of-bag apresentaram melhores resultados para datasets de classificação e regressão, respectivamente; as métricas de centralidade tiveram melhor desempenho em redes não orientadas, em geral. É possível concluir que a centralidade do autovetor e a importância dos atributos da Random Forest têm desempenho equivalente. Em outras palavras, não houve diferença estatisticamente significativa entre eles em todas, exceto em uma situação (com 40% de ruído nos exemplos para datasets de regressão), com nível de confiança de 95%. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/59/59143/tde-05122022-102337/ |
url |
https://www.teses.usp.br/teses/disponiveis/59/59143/tde-05122022-102337/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256753947803648 |