Cohomology of quasi-coherent sheaves over projective schemes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/ |
Resumo: | The objective of this work is to present the reader with the study of some mathematical tools used in current problems of algebraic geometry, assuming only some knowledge in algebra and topology. We treat basic concepts and results in the theory of sheaves and schemes that we later use to understand the correspondence between local cohomology and sheaf cohomology of quasi-coherent sheaves over projective schemes. Then, with this background we are able to state some open problems that are related to the Hilbert polynomial and to the Castelonuovo-Mumford regularity of a coherent sheaf. |
id |
USP_2c64e529d5ad949e5ac3b931a7b44423 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11082021-113531 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Cohomology of quasi-coherent sheaves over projective schemesCohomologia de feixes quasi-coherentes sobre esquemas projetivosCohomologia de feixesCohomologia localEsquema projetivoFeixe quasi-coherenteLocal cohomologyProjective schemeQuasi- coherent sheafSheaf cohomologyThe objective of this work is to present the reader with the study of some mathematical tools used in current problems of algebraic geometry, assuming only some knowledge in algebra and topology. We treat basic concepts and results in the theory of sheaves and schemes that we later use to understand the correspondence between local cohomology and sheaf cohomology of quasi-coherent sheaves over projective schemes. Then, with this background we are able to state some open problems that are related to the Hilbert polynomial and to the Castelonuovo-Mumford regularity of a coherent sheaf.O objetivo deste trabalho é apresentar ao leitor o estudo de algumas ferramentas matemáticas utilizadas nos problemas atuais da geometria algébrica, pressupondo apenas alguns conhecimentos em álgebra e topologia. Expõe conceitos e resultados básicos na teoria de feixes e esquemas, que logo são usados para entender a correspondência que existe entre a cohomologia local e a cohomologia de feixes, no caso de feixes quasi-coherentes sobre esquemas projetivos. Finalmente enunciamos alguns problemas em aberto relacionados com o polinômio de Hilbert e a regularidade de Castelonuovo-Mumford de um feixe coherente.Biblioteca Digitais de Teses e Dissertações da USPPérez, Victor Hugo JorgeAlvarez, Daniel Alberto Aguilar2021-05-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-11T22:13:02Zoai:teses.usp.br:tde-11082021-113531Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-11T22:13:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Cohomology of quasi-coherent sheaves over projective schemes Cohomologia de feixes quasi-coherentes sobre esquemas projetivos |
title |
Cohomology of quasi-coherent sheaves over projective schemes |
spellingShingle |
Cohomology of quasi-coherent sheaves over projective schemes Alvarez, Daniel Alberto Aguilar Cohomologia de feixes Cohomologia local Esquema projetivo Feixe quasi-coherente Local cohomology Projective scheme Quasi- coherent sheaf Sheaf cohomology |
title_short |
Cohomology of quasi-coherent sheaves over projective schemes |
title_full |
Cohomology of quasi-coherent sheaves over projective schemes |
title_fullStr |
Cohomology of quasi-coherent sheaves over projective schemes |
title_full_unstemmed |
Cohomology of quasi-coherent sheaves over projective schemes |
title_sort |
Cohomology of quasi-coherent sheaves over projective schemes |
author |
Alvarez, Daniel Alberto Aguilar |
author_facet |
Alvarez, Daniel Alberto Aguilar |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pérez, Victor Hugo Jorge |
dc.contributor.author.fl_str_mv |
Alvarez, Daniel Alberto Aguilar |
dc.subject.por.fl_str_mv |
Cohomologia de feixes Cohomologia local Esquema projetivo Feixe quasi-coherente Local cohomology Projective scheme Quasi- coherent sheaf Sheaf cohomology |
topic |
Cohomologia de feixes Cohomologia local Esquema projetivo Feixe quasi-coherente Local cohomology Projective scheme Quasi- coherent sheaf Sheaf cohomology |
description |
The objective of this work is to present the reader with the study of some mathematical tools used in current problems of algebraic geometry, assuming only some knowledge in algebra and topology. We treat basic concepts and results in the theory of sheaves and schemes that we later use to understand the correspondence between local cohomology and sheaf cohomology of quasi-coherent sheaves over projective schemes. Then, with this background we are able to state some open problems that are related to the Hilbert polynomial and to the Castelonuovo-Mumford regularity of a coherent sheaf. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256871195377664 |